Official Supplier of

Ihr Kontakt: Your contact:	
Geo. Gleistein und Sohn GmbH Heidlerchenstraße 7 D-28777 Bremen	
Telefon / phone: Verkauf / sales department: Einkauf / purchasing department: Technik / technical department: Fax: E-Mail:	+49 (0)421/69049-49 +49 (0)421/69049-59 +49 (0)421/69049-69 +49 (0)421/69049-99 info@gleistein.com
Gleistein Ropes Ltd. Unit 15A, Wheel Farm Business Park Wheel Lane Westfield GB-East Sussex TN35 4SE	
Telefon / phone: Fax: E-Mail:	+44 (0)1424/756161 +44 (0)1424/756262 sales-uk@gleistein.com
Gleistein Slovakia s.r.o. M. R. Stefanika 19 SK-91160 Trencin	
Telefon / phone: Fax: E-Mail:	+421 (0)32/7443737 +421 (0)32/7443736 sales-sk@gleistein.com
Internet: www.gleistein.com	

Tauwerk für Industrie und Schifffahrt

Industrial and Marine Ropes

Tauwerk für Industrie und Schifffahrt Industrial and Marine Ropes

Überarbeitete Neuauflage 2005 Revised Edition 2005

Official Supplier of

Uns bewegt, was verbindet Our concern is that things connect

Gleistein Tauwerk

Seit 1824 steht der Name Gleistein für überlegene Tauwerkprodukte. Das älteste industrielle Familienunternehmen Bremens blickt auf eine bewegte Geschichte im Wandel der Zeiten zurück und hat dabei die Entwicklung zum Spezialisten für alle Arten der textilen Verbindung vollzogen.

Bei Gleistein galt es seit jeher, bestehende Werte zu nutzen um neue aufzubauen – die Verbindung zu schaffen zwischen Tradition und Fortschritt.

Gleistein ist mittlerweile eine international tätige Firmengruppe mit drei Standorten. Neben dem 1824 gegründeten Stammhaus in Bremen besteht seit 1997 in Trencin, Slowakische Republik, die Gleistein Slovakia S.R.O. als Produktionsgesellschaft. Die Vertriebsgesellschaft Gleistein Ropes Ltd. in Westfield, Südengland, komplettiert seit 2002 die Gruppe.

Gleistein beschäftigt sich mit der Entwicklung, Herstellung und dem Vertrieb von Qualitätstauwerk in vielfältigen und richtungweisenden Konstruktionen. Die Qualitätsmanagementsysteme aller drei Standorte sind nach DIN EN ISO 9001:2000 zertifiziert.

Insgesamt arbeiten ca. 130 hoch qualifizierte Mitarbeiter bei Gleistein. Sie gewährleisten mit ihrem persönlichen Einsatz die Umsetzung des Unternehmensziels: Für die nationalen und internationalen Kunden der Gruppe stets die passende textile Verbindung zu entwickeln und zu liefern.

Gleistein Ropes

The name "Gleistein" has stood for quality ropes since 1824. The oldest industrial family company in Bremen, with a vibrant and colourful history, has maintained its link with the past to create products for the future. The result is that Gleistein has become a specialist in utilizing the most modern materials to create ultimate technological products.

Gleistein has a policy of using existing expertise to pursue future development – the connection between tradition and the latest technological developments.

Gleistein today is a multinational concern with 3 international branches. Complimenting the Bremen headquarters, founded in 1824, is the production

subsidiary Gleistein Slovakia S.R.O in Trencin, Slovakia, established in 1997 and the technical sales, warehousing and distribution subsidiary, Gleistein Ropes Ltd. in Westfield, Southern England, opened in 2002.

Gleistein is concerned with the development, production and supply of quality ropes in diverse and innovative constructions. The quality management systems of all branches are certified in accordance with DIN EN ISO 9001:2000.

The Gleistein group's total staff amounts to 130 highly qualified people. The goal of the company is to provide national and international customers with the appropriate textile connection to suit their particular requirements. This is achieved through the participation of the personally motivated employees at all levels.

Das komplette Programm aus einer Hand

Gleistein verfügt in Bremen und Trencin über zwei der international modernsten Produktionsbetriebe zur Herstellung von Tauwerk, mit insgesamt über 15.000 m² Produktionsfläche. Eine Vielzahl von modernen Chemiefasern wird zu einer Gesamtzahl von über 3.500 verschiedenen Sorten verarbeitet. Anspruchsvolle Konstruktionen und richtungweisende Seilveredelungsanlagen bieten das gewisse "Mehr" an Qualität und Kundennutzen. Das Sortiment umfasst aber auch bewährte Standardprodukte, die nach den aktuellen internatio nalen Seilnormen und oder nach anspruchsvolleren Fabriknormen gefertigt werden.

Gleistein ist Ihr Partner für Tauwerk – denn zum kompletten Produktangebot erhalten Sie bei uns auch den kompletten Service. Wir unterstützen Sie mit unserem Know-how und helfen Ihnen bei der Wahl des richtigen Seils. Für Sie konfektionieren wir alle Produkte gebrauchsfertig, führen im Auftrag Tests aus oder entwickeln für Ihre Anwendung eine perfekte Speziallösung.

Der aktuelle Produktkatalog informiert Sie über unser Sortiment an technischen Seilen – umfassend und übersichtlich.

The complete selection from one source

Gleistein possesses over 15.000 m² manufacturing capacity at two of the most modern international rope production plants. A selection of modern synthetic fibre ropes is produced which in total amass to over 3.500 different products. Gleistein's in-house, specially designed performance-enhancing machinery and high technical standards, ensure the extra "fine tuning" in quality and service use. The Gleistein product collection is based on proven standard products designed and constructed in accordance with the strong internal company standards and actual international rope standards where applicable.

Gleistein is your partner for rope – not only the complete product range but also the complete service. We support you with our know-how and help you in your selection with the right rope for your application. Our sales service ensures all products can be pre-spliced or laboratory tested on request. Also we will readily develop specialised solutions for your application.

The Gleistein catalogue informs you about our product range of technical ropes – in complete transparency as to materials and suitable constructions.

Ihr Bedarf ist unser Anspruch Satisfying your rope wishes

Welches Seil wofür?

Gleistein hält ein Programm von mehr als 3.500 unterschiedlichen Tauwerkprodukten für Sie bereit. Eine Vielzahl von Rohstoffen und Konstruktionen ermöglicht die Abstimmung auf jede Anforderung. Die meisten Ansprüche können wir dabei aus dem bestehenden Sortiment bedienen, aber wir werden auch immer wieder durch die Fantasie unserer Kunden überrascht und gefordert.

In den nachfolgenden Hauptgeschäftsfeldern ist Gleistein aktiv und bietet perfekte Problemlösungen an. Sollten Sie Ihre Anwendung in keiner der Kategorien wieder finden, sprechen Sie uns an: Wir freuen uns, Sie mit kompetentem Rat unterstützen zu können.

Which rope for what purpose?

Gleistein offers you a range of more than 3.500 different products. The variety of raw materials and the large selection of constructions available ensure that our versatile product range meets all applications and their demands. However, we are constantly and pleasantly surprised by the creativity of our customers that present us with the new challenges desired by our engineers.

Our ropes offer the perfect solution in all the major fields of application. If you do not find the solution for your system in one of the following categories, we will gladly supply any technical support required.

Wassersport

Produkte für Segelprofis, Touren- und Sportsegler, sowie modernstes Tauwerk für Superyachten. Zu diesem Markt ist ein separater Katalog erhältlich. **Recreational Marine**

Products for racing and cruising sailors, and other watersport enthusiasts, together with the most modern ropes for Mega Yachts are catered for in Gleistein's separate catalogue for this highly specialized market.

Heavy Marine/Offshore

Kein anderer Markt benötigt eine so große Vielfalt an Konstruktionen und Durchmessern. Von der Flaggenleine über Schiffsfestmacher bis hin zum 300 mm starken Mehrkernseil zur permanenten Verankerung von Bohrinseln.

Heavy Marine/Offshore

No other market requires such an extensive repertoire of materials, constructions and sizes. From flag halyards, through ship's moorings, to 300mm diameter multi-core ropes used in the anchoring of offshore oil rigs.

Freizeit und Unterhaltung

Spezialseile für Spielplatzzubehör sowie Spezialprodukte für Theater- und Filmproduktionen. Dazu unser Programm an Bergsteigerseilen.

Recreation and Entertainment

Uniquely specialized ropes for applications in playgrounds, theatres and film studios. A comprehensive range of climbing ropes is also available.

Heimbedarf

Unser Geschäftsfeld Heimbedarf bietet eine Vielzahl an Produkten für das Basteln und Heimwerken in Hobby und Freizeit.

Do It Yourself/Hardware Stores

This section of our range offers a large selection of rope for home improvements, hobby and domestic applications.

Industriebedarf

Technische Seile und Schnüre als Kraft aufnehmende Zug- und Verbindungselemente und weitere Spezialkonstruktionen.

Industry

Technical ropes and cords for load lifting, connecting elements and special constructions are available.

Sicherheit

Gleistein ist führend bei der Herstellung von Sicherheitsseilen für die persönliche Schutzausrüstung (PSA) für das Arbeiten in großer Höhe oder das Bergen von verunglückten Personen.

Personal Security Equipment/Safety Lines

Gleistein is a number one producer of safety lines for personal safety applications (PSA) including working at height or search and rescue equipment.

Seilveredelung

Gleistein bietet eine komplette Palette an Seilveredelungen, denn nur so kann aus einem durchschnittlichen Seilprodukt die material- und konstruktionsoptimierte Seilverbindung werden. Selbst entwickelte und erstellte Anlagen ermöglichen folgende Veredelungsprozesse:

- Thermisches und kaltes Recken
- Thermisches Schrumpfen
- Färben
- Imprägnieren
- Beschichten
- Umextrudieren
- Spleißen und Konfektionieren

Technische Systemberatung

- Qualitätsprüfung von Seilen und Seilsystemen
- Problemlösungsberatung
- Projektmanagement

Rope Enhancement Procedures

Gleistein includes a full service of treatments for rope that results in a standard rope product becoming a special combination element. Gleistein designed and manufactured machines enable us to provide the following unique enhancement processes.

- Thermal and cold stretching
- Thermal shrinking / Thermo-stabilization
- Colouring
- Coating
- Over extrusion
- Splicing and fabrication

Engineering Consultancy

- · Quality Control of ropes and rope systems
- Trouble Shooting and solution providers
- Project Management

Qualität mit System: So finden Sie Ihr Seil

Unsere Produktnamen verdeutlichen Seilkonstruktion und Rohstofffamilie der Kraft aufnehmenden Seilelemente. Sie bestehen aus zwei Elementen:

Das erste Element verdeutlicht die Rohstofffamilie.

Mega Hochmodulare Rohstoffe gelb Dyneema Heat Set orange blau **Geo** Polyester Polyamid grün Polypropylen braun

Für die Geo Rohstoffe liegen die entsprechenden Kennzeichnungsfarben der DIN EN Normen zugrunde.

Mega steht für Kraft aufnehmende Seilelemente aus hochmodularen Chemiefasern, wie HMPE (Hochmodul-Polyethylen, Dyneema oder Spectra), LCP (Hochmodul-Polyester, Vectran) und Aramiden (Hochmodul-Polyamid, also Kevlar, Twaron und Technora) oder PBO. **Geo** steht für Kraft aufnehmende Seilelemente aus

hochfesten Chemiefasern, also Polyester, Polyamid, Polypropylen und Polyäthylen.

Das zweite Element benennt die Seilkonstruktion.

Mooring für Seile aus parallelen, Kraft aufnehmenden Kernen plus Schutzmantel

Twin für Seile aus geflochtenem Kern plus Mantel **One** für Rundgeflechte mit und ohne Einlage **Square** für 8-er Quadratgeflechte Twist geschlagene (also gedrehte) Seile

GeoSpecials für verschiedene Seilkonstruktionen, die durch ihre Anwendung definiert sind.

Sie finden zu jeder Konstruktion ausführliche Informationen, Diagramme und Vergleichstabellen.

Our rope identification system: selecting the quality you require

All product group names consist of two elements: this is how the system works.

The first part determines the raw material group.

Mega High Modulus Fibres yellow Dyneema Heat Set orange blue **Geo** Polyester Polyamide/Nylon green brown Polypropylene

For the Geo raw materials the colour codes are in accordance with the international DIN EN standards.

Mega The load bearing rope element is constructed from high modulus synthetic fibres, such as HMPE (high modulus polyethylene, Dyneema and Spectra), LCP (Liquid Crystal Polyester, Vectran) and Aramids (high modulus polyamides, Kevlar, Twaron and Technora) or PBO. Geo for load bearing rope elements made from synthetic fibres such as polyester and polyamide (Nylon) and various types of polypropylene and polyethylene.

The second element determines the rope construction.

Mooring ropes constructed from parallel, load carrying cores plus protective cover

Twin ropes made from braided core and braided cover One single braids, with and without core **Square** square plaits

Twist laid ropes

GeoSpecials are different rope constructions that are determined through their applications.

Each construction is clearly detailed through specific information, charts and diagrams.

Inhalt

Contents		Seite Page
•	echtmantel (Mehrkernseile) ided cover (multiple core rope)	10
	s Flechtmantel (Doppelgeflechte) ded cover (double braid)	18
One Rundgeflechte Single braids		28
Square 8-er Quadratgeflechte 8-strand square plaits		38
Twist Geschlagenes Tauwerk Laid ropes		46
GeoSpecials		56
Herkules	Kombinierte Draht-Faserseile Combined Wire-Fibre Ropes	58
GeoTow	Autoabschleppseile Car Tow Ropes	60
GeoSafe	Sicherheitsseile Safety Ropes	61
GeoRolap	Waschwalzenseile Roller Lappings	62
GeoLastic	Gummileinen Shock Cords	63
GeoArbor	Baumseile Tree Surgery (Arborist) Ropes	64
GeoClimber	Bergsteigerseile Climbing (Mountaineering) Ropes	68
GeoStringer	Kabelzugseile Cable Pulling Ropes	70
GeoHemp	Hanfseile Hemp Ropes	72
Anhang / Appendi	x	73

Rohstoffe, Technische Daten, Begriffserklärungen, Sicherheitshinweise Raw Materials, Technical Properties, Technical Terms, Safety Instructions PES

Mooring

Was sieben kraftvolle Flechtkerne versprechen, das hält Mooring in einer einzigartigen Konstruktion. Mit satten Reserven für extremste Belastungen – dauerhaft gebündelt und geschützt von einem robusten Flechtmantel.

The potential strength of seven powerful, braided cores, solidly packed and protected in a robust braided cover, is realized by "Mooring" in a unique construction.

- Sieben parallele Kerne, 12-fach geflochten aus gerecktem Dyneema SK75 mit GEOTHANE HD ausgerüstet (Gleistein Heat Set Process)
- Robuster, abriebfester Mantel aus hochfesten Fasern, je nach Durchmesser als 24-er oder 32-er Geflecht
- Festigkeit und Dehnungsverhalten werden bei MegaMooring ausschließlich von den Kernen bestimmt, der robuste Mantel schützt und bündelt die Kerne (core dependent construction)
- MegaMooring Tauwerk erreicht extreme Festigkeiten bei geringster Dehnung
- Die aufwändige Konstruktion ermöglicht einen vergleichsweise kompakten Seilquerschnitt
- MegaMooring ist die Weiterführung unserer bewährten MegaTwin Konstruktion und erhältlich ab 52 mm Ø

- Seven parallel cores, each of 12-plait braids, composed of heat set Dyneema SK75 (Gleistein Heat Set Process) and GEOTHA-NE HD
- Improved abrasion resistance, extremely strong cover braid, 24- or 32-plait from high tenacity fibre
- Break load and stretch characteristics are determined by the seven heat set parallel cores made from Dyneema SK75, wherein the cover contains and protects the strength members in a core dependent construction
- Minimum elongation and impressive break load capacity in a compact and robust construction
- The sophisticated construction forms a very stable rope cross-section
- MegaMooring is the next development of our highly successful Mega-Twin range and is available from 52 mm Ø

Innere Werte: Gereckte

Dyneema-Geflechte übertreffen das Leistungspotenzial

von Stahlseilen, korrodieren
aber nicht und wiegen nur
ein Achtel. Ein ganzes Bündel
davon steckt in MegaMooring
– der hochfeste Mantel sorgt
dafür, dass sie alle an einem
Strang ziehen!

Core qualities: heat set


Dyneema braids that exceed
the performance expectations
of wire rope, are, at the same
time, non-corrosive and weigh
one eighth of the weight of
the equivalent wire rope.

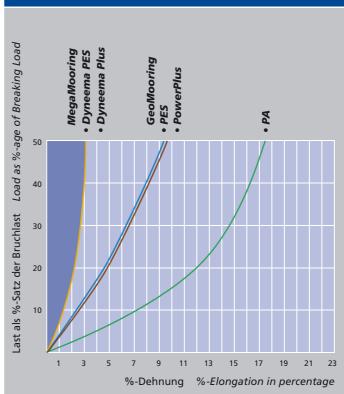
Klarer Teamsieg: Sieben Kerngeflechte aus hochfesten
Fasern – optimiert für maximale Bruchkraft bei geringster Dehnung – führt GeoMooring zu gemeinsamer Kraft zusammen! Für mächtige
Trossen mit hervorragenden
Leistungsdaten und hoher
Lebensdauer.

Combined operation: seven braided cores of high tenacity fibres provide the maximum break load at the lowest elongation resulting in the ultimate performance for any given material.

- Sieben parallele Kerne, 12-fach geflochten aus hochfesten Endlosfilamenten
- Robuster, abriebfester Mantel aus hochfesten Fasern, je nach Durchmesser als 24-er oder 32-er Geflecht
- Festigkeit und Dehnungsverhalten werden bei GeoMooring im Wesentlichen von den Kernen bestimmt, der robuste Mantel schützt und bündelt die Kerne
- GeoMooring Tauwerk erreicht sehr hohe Festigkeiten bei geringer Dehnung

- Seven parallel cores, each of 12-plait braids composed of high tenacity continuous filaments
- Improved abrasion resistant extremely strong cover braid, 24- or 32- plait made from the same material
- Break load and stretch characteristics are mainly determined by the parallel cores, whereas the cover bundles and protects the strength members
- Minimum elongation and impressive break load capacity in a compact and robust construction

durch Experten spleißbar.
Dabei kann eine hohe
Festigkeit in der Endverbindung erreicht werden.
Auf Wunsch führen wir
diese Arbeiten gerne für
Sie aus


• MegaMooring can be supplied in long lengths

 The spliceability of Mega-Mooring ensures that maximum achievable loads can be realized. Gleistein is pleased to provide this service if required MegaMooring contains them in bundles. The compact cover, in turn, ensures that the cores work together in

harmony.

Load/Elongation Curves of MegaMooring/GeoMooring

- Die aufwändige Konstruktion ermöglicht einen vergleichsweise kompakten Seilquerschnitt
- GeoMooring ist die Weiterführung unserer bewährten GeoTwin Konstruktion und erhältlich ab 56 mm Ø
- Im Vergleich mit der zweistufigen GeoTwin Konstruktion erreicht Geo-Mooring bei identischen Seildurchmessern eine erhöhte lineare Festigkeit, da der geringere Durchmesser der einzelnen Kerngeflechte eine optimale Ausrichtung der Kraft aufnehmenden Fasern in Zugrichtung ermöglicht
- GeoMooring ist in großen Längen lieferbar
- GeoMooring Seile sind durch Experten spleißbar.
 Dabei kann eine hohe Festigkeit in der Endverbindung erreicht werden.
 Auf Wunsch führen wir diese Arbeiten gerne für Sie aus

- The sophisticated construction forms a very stable cross-section of the rope
- GeoMooring is the next development of our highly successful GeoTwin ropes and available from 56 mm Ø
- Compared to standard double braid constructions GeoMooring achieves higher break loads, as the smaller diameter of the load bearing cores allows for higher strength conversion of the fibre materials used
- Minimum elongation and impressive break load capacity in a compact and robust construction
- GeoMooring can be supplied in long lengths
- Expert riggers can splice GeoMooring ropes.
 This guarantees that high loads are achieved by the connecting element. Gleistein is pleased to provide this service

PA

MegaMooring Dyneema PES

MegaMooring Dyneema Plus

Immer ganz oben: Schwimmfähiger Ersatz für groß

MegaMooring Dyneema Polysteel

So leicht kann ein schweres Seil sein:

maximale Festigkeit, minimales Gewicht.

Zugzwang: Optimiert für höchste Belastung in rauer Umgebung, beste Eignung für Ankertrossen.

 Robustes Mantelgeflecht aus hochwertigen Polyester Endlosfilamentgarnen mit GEOGARD MARINE FINISH in weiß mit Kennung lilaweiß-lila

dimensionierte Drahtseile.

Mantelgeflecht aus kombi-

garnen (Gleistein Plus-Garne)

• Robustes, dabei schwimm-

fähiges Mantelgeflecht aus

seegrünen Polysteelgarnen

Auf Wunsch auch in ganz

weiß lieferbar

nierten Polysteel- Polyester-

• Robustes, dabei leichtes

in grün-weiß meliert

- Auf Wunsch auch in ganz schwarz lieferbar
- Beste Abriebbeständigkeit
- Exzellente UV Beständiakeit

Gute Abriebbeständigkeit

Gute UV Beständigkeit

MegaMooring Dyneema PES

The pulling force: designed for highest loads in toughest conditions, ideal for anchor moorings.

- Tough cover braid from high tenacity continuous filament varns with GEOGARD MARINE FINISH in white with purplewhite-purple marker
- Black is also available on request
- Excellent abrasion resistance
- Excellent UV resistance

MegaMooring Dyneema Plus

Always on top: ideal floating substitute for wire ropes.

- Auf Wunsch auch in ganz • Strong but light cover weiß lieferbar braid material made from • Sehr gute Abriebbestäncombined Polysteel and diakeit Polvester varns (Gleistein • Sehr gute UV Beständigkeit Plus yarns) in green-white mix
- · White available on request
- Very good abrasion resistance
- Very good UV resistance

The lightweight answer for a heavy task:

- material made from sea green Polysteel yarns
- Good UV resistance
- White available on request

MegaMooring Dyneema Polysteel

maximum break strength, minimum weight.

- Strong floating cover braid Good abrasion resistance

GeoMooring Polyester

Greatest strengths for greatest loads: top marks for break strength and longevity.

- Cores from high tenacity PES continuous filament
- Abrasion resistant robust braided cover from the same material
- Excellent abrasion resistance
- Excellent UV resistance
- Does not float

GeoMooring Polyamid

GeoMooring

GeoMooring Polyester

· Kerne aus hochfesten

PES Endlosfasern mit

Abriebfester, äußerst

demselben Material

GEOGARD MARINE FINISH

robuster Flechtmantel aus

in Sachen Festigkeit und Langlebigkeit.

Hat Schläge gern ... ausgezeichnetes Absorptionsverhalten, ideal für groß dimensionierte Festmacher.

Größte Stärken auch bei großen Stärken: Spitzenwerte

Exzellente

Exzellente UV

Beständigkeit

• Nicht schwimmfähig

Abriebbeständigkeit

- Kerne aus hochfesten Polyamid Endlosfasern mit GEOGARD MARINE FINISH Abriebfester, äußerst
- robuster Flechtmantel aus demselben Material
- · Hohe Dehnung bei ausgezeichneter Festigkeit
- Gute Abriebbeständigkeit
- Gute UV Beständigkeit • GEOGARD vermindert die bei Polyamid unvermeidliche Materialverhärtung
- durch Witterungseinflüsse • Nicht schwimmfähig

GeoMooring Polyamide/Nylon

The shock-absorber - excellent high shock load resistance, ideal for large, heavy duty mooring lines.

- Cores from high tenacity Nylon continuous filament
- Abrasion resistant robust braided cover from the same material
- High elongation with excellent break load
- Good abrasion resistance Good UV resistance
- GEOGARD MARINE FINISH minimizes hardening due to weathering
- Does not float

® GeoMooring Plus

Das Plus für Leistung und Wirtschaftlichkeit:

Überlegene Konstruktion, hochwertige Rohstoffe.

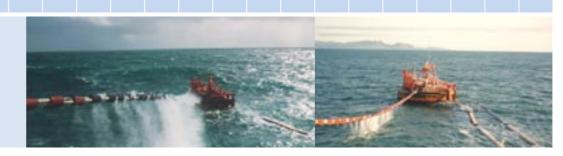
- Kerne und Mantel aus hochfesten Gleistein Plus Garnen
- · Mantel auf Wunsch mit GEOLAN Imprägnierung für verbesserte Abriebfestigkeit
- Geringe Dehnung und höchste Seilfestigkeit in
- einer kompakten und robusten Konstruktion Gute Abriebbeständigkeit
- Gute UV Beständigkeit
- Ökonomische und leichte Seile mit sehr guten technischen Werten
- Neutrales Schwimmverhalten

GeoMooring Plus

A double plus for performance and economy: proven construction in a high performance raw material.

- Cores from high tenacity Gleistein Plus yarns
- Abrasion resistant robust braided cover from the same material with **GEOLAN** impregnation
- Moderate elongation and high break load in a compact and robust construc-
- Good abrasion resistance
- Good UV resistance
- Inexpensive light weight ropes with good physical properties
 - Neutrally buoyant

MegaMooring 52 56 64 68 72 80 MegaMooring Dyneema Polyester kg/100m 191 232 241 268 302 338 373 413 Bl. in kN 1.680 2.191 2.870 2.975 3.374 3.948 4.508 5.068 5.635 MegaMooring Dyneema Plus kg/100m 139 170 210 217 244 278 311 345 383 Bl. in kN 1.680 2.191 2.870 2.975 3.374 3.948 4.508 5.068 5.635 MegaMooring Dyneema Polysteel kg/100m 130 161 200 207 234 268 301 335 373 Bl. in kN 1.680 2.191 2.870 2.975 3.374 3.948 4.508 5.068 5.635


Bei Durchmessern kleiner als 52 mm empfehlen wir die Verwendung von MegaTwin Produkten For diameters less than 52 mm we recommend the use of **MegaTwin** products

Polyester

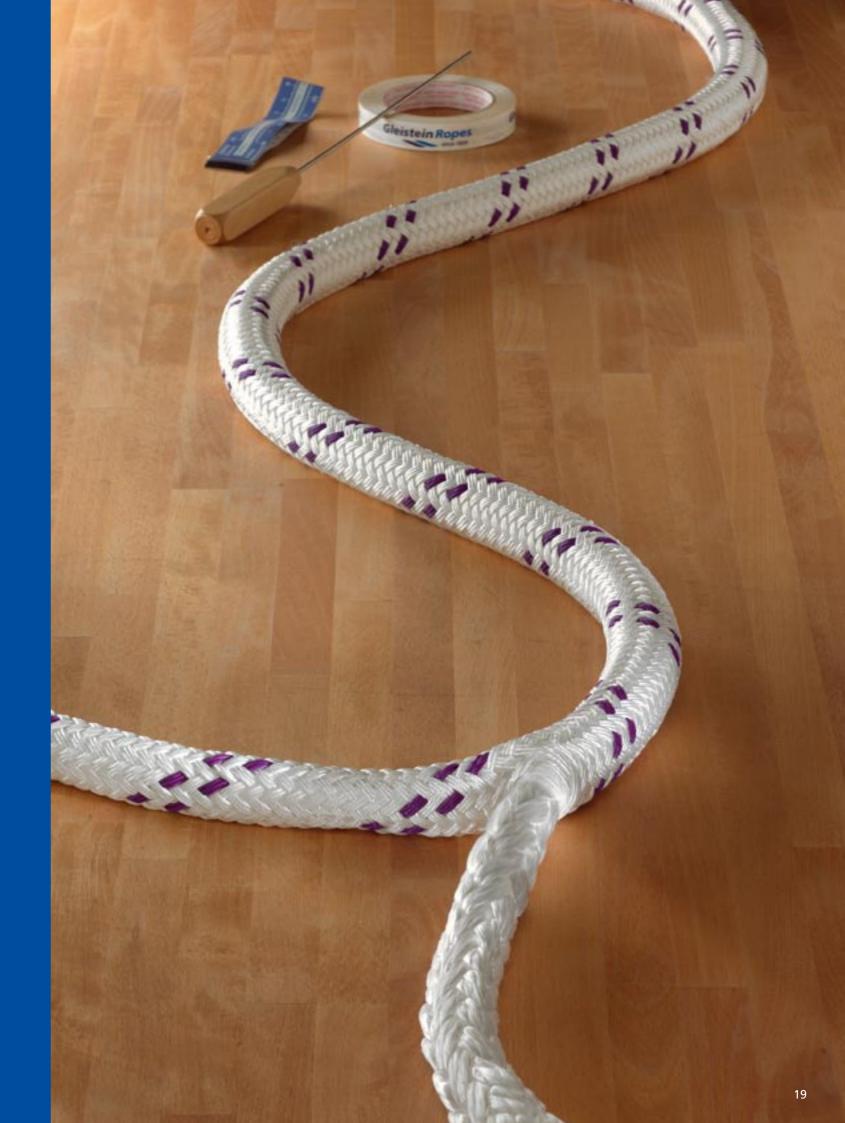
Ø in mm	56	60	64	68	72	80	88	96	104	112	120	128	136	144	152	160	168
GeoMooring P	olyest	er															
kg/100m	239	275	315		395	489	590	702	825	956	1.100	1.250	1.410	1.580			
Bl. in kN	905	1.090	1.180		1.530	1.950	2.160	2.560	2.750	3.360	3.850	4.500	5.300	5.900			

Polyamid / Polyamide (Nylon)

Ø in mm	56	60	64	68	72	80	88	96	104	112	120	128	136	144	152	160	168	3									
GeoMooring	Polyami	id / Po	lyam	ide (N	lylon)																						
kg/100m	195	223	254		321	398	481	572	671	780	893	1.020	1.150	1.280													
Bl. in kN	735	910	980		1.218	1.680	1.960	2.240	2.450	2.940 3	3.360	3.850	4.200	4.620													
GeoMooring	Polyami	d / Po	lyam	ide (N	lylon)	Moor	ing M	laster	N7 vo	n / <i>by</i> Sa	amson	n Rope	Techno	ologies													×
kg/100m											947	1.081	1.157	1.309	1.440	1.596	1.69	17									
Bl. in kN										3	3.973	4.531	4.858	5.448	6.038	6.697	7.14	1									
GeoMooring	Polyami	d / Po	lyam	ide (N	lylon)	Moor	ing M	laster	N7 A	76 von /	by Sa	amson	Rope T	[echnol	ogies												
kg/100m											947	1.081	1.157	1.309	1.440	1.596	1.69	17									_
Bl. in kN										4	1.091	4.667	5.003	5.611	6.233	6.910	7.35	0									

Polypropylen / Polypropylene

Ø in mm	56	60	64	68	72	80	88	96	104	112	120	128	136	144	152	160	168									
GeoMooring Po	owerPl	us																								
kg/100m	158	181	206	233	261	322	390	464																		
Bl. in kN	592	679	773	870	978	1.208	1.461	1.739																		


Bei Durchmessern kleiner als 56 mm empfehlen wir die Verwendung von **GeoTwin** Produkten For diameters less than 56 mm we recommend the use of **GeoTwin** products

Twin

Bei allen Doppelgeflechten teilen sich ein Flechtkern und ein ihn umgebender Flechtmantel die Arbeit. Dennoch sind die Twins ungleiche Brüder.

All double braids consist of dual load-sharing braided core and compatible braided cover. Not all Twins are necessarily identical.

• Kern 12-fach geflochten aus Dyneema, Vectran oder Technora. Andere hochmodulare Fasern wie PBO, Kevlar oder Twaron auf Wunsch

 Auch mit geflochtenem Zwischenmantel aus Polyester Stapelfaser für optimierten Kraftschluss bei MegaTwin Dyneema und MegaTwin Vectran liefer-

• Robuster, abriebfester Mantel aus hochfesten Fasern, je nach Durchmesser als 16-er, 20er, 24-er oder 32-er Geflecht

 Festigkeit und Dehnungsverhalten werden bei MegaTwin ausschließlich vom Kern aus hochmodularen Fasern bestimmt, der robuste Mantel schützt und bündelt den Kern (core dependent construction)

 MegaTwin-Tauwerk erreicht extreme Festigkeiten bei geringster Deh-

 MegaTwin funktioniert optimal auf Winden

• Core 12-plait made from Dyneema, Vectran or Technora. Other high modulus fibres like PBO, Kevlar and Twaron on request

• Where necessary an intermediate cover from polyester staple fibre is used in MegaTwin Dyneema and MegaTwin Vectran

• A robust, abrasion resistant cover from high tenacity fibre is constructed in a 16-, 20-, 24- or 32plait braid

• Load- and elongation behaviour in a MegaTwin construction is determined by the core element

• The robust cover protects and ensures a compact cross section

• MegaTwins provide a solid construction with a minimum of elongation

• MegaTwin is the ideal construction for use on winches

• MegaTwin Dyneema is also available with heat set core

MegaTwin

Geballte Kraft im schützenden Mantel. Ein Hochmodulfaser-Kern mit höchster Bruchlast bei minimaler Dehnung nimmt die Kräfte auf, der feste Polyestermantel gibt Schutz und bündelnden Halt.

Maximum strength encased within a durable protective cover. The high modulus fibre core with the ultimate break strength and minimum elongation is the loadcarrying component in this construction. The tight polyester cover ensures a compact cross-section with maximum protection properties.

GeoTwin

Die Ökonomie einer perfekten Synthese. Kern und Mantel aus hochfesten Fasern übernehmen die Aufgabe der Kraftübertragung jeweils zu fünfzig Prozent ... für eine hundertprozentige Materialausnutzung.

The perfect harmony of material, performance and cost. Core and cover from high tenacity fibres share the load equally, resulting in the optimum combination of the materials.

• Kern 12-fach geflochten • Robuster, abriebfester Mantel, je nach Durchmesser als 16-er, 20er,

24-er oder 32-er Geflecht

• Kern und Mantel sind in Bruchkraft und Dehnverhalten sorgfältig aufeinander abgestimmt und tragen die Kraft zu je

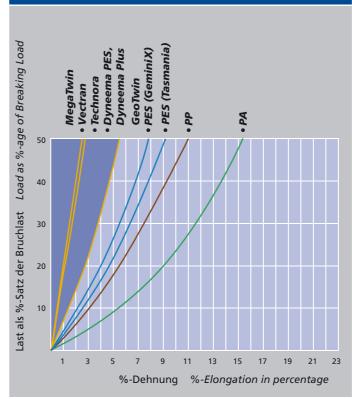
 Kern und Mantel bestehen typischerweise jeweils aus identischen hochfesten Rohstoffen wie Polyester, Polyamid (Nylon) und Polypropylen

 GeoTwin gewährleistet eine deutlich bessere Ausnutzung der Rohstofffestigkeit als die klassische geschlagene (Twist) oder quadratgeflochtene (Square) Konstruktion

• Core braided 12-plait

 Covers robust and flexible in 12-, 20-, 24- or 32-plait braids, depending on the diameter

• Two braids compatible in break strength and elongation made from hightenacity continuous fibres, combine to produce the ideal double braid


 GeoTwins are composed of high tenacity fibres polyester, polyamide (nylon) and polypropylene. Typically, both the cover and core are constructed from the same material

 GeoTwin constructions fully optimize the characteristics of the high tenacity fibres compared to laid ropes (Twist) or square plaits (Square)

Kraft-Dehnungsdiagramm MegaTwin/GeoTwin

Load/Elongation Curves of MegaTwin/GeoTwin

- · GeoTwin ist eine flexible • Flexible rope construction Seilkonstruktion mit exzellenter Bruchkraft racteristics
- Eine ausgereifte Spleißtechnik garantiert das volle Leistungspotenzial von GeoTwin-Seilen auch in der Endverbindung. Gleistein bietet diese Spleißarbeit als Service an
- Es wird empfohlen, gespleißte Augen mit Kauschen oder Schutzschlauch zu versehen
- with excellent break cha-
- A special splice technique is adopted for the ideal linear tenacity of this construction. Gleistein is pleased to supply this service on request
- Gleistein recommends a protective sheath with each splice provided

stärkte Spezialkauschen, da Standardkauschen durch die enormen Belastungen deformiert wer-• Eine spezielle Spleißtech-

• MegaTwin benötigt ver-

- nik garantiert das hohe Leistungspotenzial von MegaTwin-Seilen auch in der Endverbindung. Gleistein bietet diese anspruchsvolle Technik als Service an
- Gleistein recommend reinforced thimbles with MegaTwins. Standard thimbles may buckle under the higher loads
 - End fittings are attached using a special splice technique wherein the core is reintroduced into itself. This splice procedure can be carried out by Gleistein on request

- Kern 12-fach aus Dyneema SK75 Fasern
- Aufgrund unelastischer Längung (= Kriechen) weniger für statischen Einsatz geeignet
- Auf Wunsch mit Zwischenmantel für optimierten Kraftschluss
- Robuster geflochtener Polyester-Mantel
- Nicht schwimmfähig

MegaTwin Dyneema PES HS

Hart, aber gereckt ... nochmals optimierte Festigkeit und Dehnung durch Gleistein Heat Set Prozess!

- SK75 Fasern
- Kerne thermisch gereckt, mit GEOTHANE HD Coating
- Robuster geflochtener Polyester-Mantel
- Nicht schwimmfähig
- Kern 12-fach aus Dyneema Aufgrund unelastischer Längung (= Kriechen) weniger für statischen Einsatz geeignet
 - · Auf Wunsch mit Zwischenmantel für optimierten Kraftschluss

MegaTwin Dyneema Plus

Entscheidende Erleichterung: Dyneemakern mit drahtseilgleicher Leistung in einem schwimmfähigen Seil.

- Kern 12-fach aus Dyneema Auf Wunsch mit Zwischen-SK75 Fasern
- Aufgrund unelastischer Längung (= Kriechen) weniger für statischen Einsatz geeignet
- Schwimmfähig
- mantel für optimierten Kraftschluss
- Robuster geflochtener Mantel aus Gleistein Plus Garnen (Polysteel-Polyester-Mix)

MegaTwin Dyneema Plus HS

Hart, aber gereckt ... nochmals optimierte Festigkeit und Dehnung durch Gleistein Heat Set Prozess!

- Kern 12-fach aus Dyneema® SK75 Fasern
- Kerne thermisch gereckt, mit GEOTHANE HD Coating
- Aufgrund unelastischer Längung (= Kriechen) weniger für statischen Einsatz geeignet
- Auf Wunsch mit Zwischenmantel für optimierten Kraftschluss
- Robuster geflochtener Mantel aus Gleistein Plus Garnen (Polysteel-Polvester-Mix)
- Schwimmfähig

MegaTwin Vectran

Kompromisslos in Festigkeit und Dehnung, kein Kriechen unter Last: perfekt für statischen Einsatz.

- Kern 12-fach aus Vectran Fasern, auch kalt gereckt lieferbar
- Polyester-Mantel
- Bestes Verhalten auf Umlenkungen, daher
- auch für alle dynamischen Einsätze geeignet
- · Auf Wunsch mit Zwischenmantel für optimierten Kraftschluss

MegaTwin Technora

Hält viel, dehnt kaum, kriecht gar nicht ...

Die ökonomische Lösung für statischen Einsatz.

- Kern aus Technora Aramid Fasern, auch kalt gereckt lieferbar
- Polyester-Mantel
- Technora ist das Aramid mit der höchsten spezi-
- fischen Festigkeit und den besten dynamischen Eigenschaften, Auf Wunsch werden auch andere Aramide wie Keylar und Twaron verarbeitet

MegaTwin Dyneema PES

Break loads and elongation comparable to wire rope providing an excellent dynamic performance.

- 12-plait braided core of Dyneema SK75 fibres
- The application of Dyneema in static applications may be inappropriate due to its creep behaviour
- · Constructed with a polyester intermediate cover on request
- Cover: Robust Polyester
- Non buoyant

MegaTwin Dyneema PES HS

Tough and stretched - improved tenacity and minimised stretch through Gleistein Heat Set Process!

- 12-plait braided core of Dyneema SK75 fibres
- Core thermally stretched and GEOTHANE HD coated
- Robust Polyester Cover Non buoyant
- The application of Dyneema in static applications may be inappropriate due to its creep behaviour
- · Constructed with a polyester intermediate cover on request

MegaTwin Dyneema Plus

"Light and easy" - Dyneema core with wire-like break load in a buoyant cover.

- 12-plait braided core of Dvneema SK75 fibres
- The application of Dyneema in static applica-tions may be inappropriate due to its creep behaviour

• Buoyant

- request
 - Robust braided cover made of Gleistein Plus (Polysteel with Polyester)

· Constructed with a polyes-

ter intermediate cover on

MegaTwin Dyneema Plus HS

Tough and stretched - improved tenacity and minimised stretch through Gleistein Heat Set Process!

- 12-plait braided core of Dyneema SK75 fibres
- Core thermally stretched and GEOTHANE HD coated
- The application of Dyneema in static applications may be inappropriate due to its creep behaviour
- · Constructed with a polyester intermediate cover on request
- Robust braided cover made of Gleistein Plus (Polysteel with Polyester)
- Buoyant

MegaTwin Vectran

Uncompromising tenacity and elongation, no creep under load: perfect for static applications.

- 12-plait braided core of Vectran fibres, which can be pre-stretched on request
- Vectran has excellent resistance to bending
- fatigue and is thus ideal for dynamic applications
- · Constructed with a polyester intermediate cover on request
- Polyester cover

MegaTwin Technora

High strength, low elongation, without creep.

The economic solution for static applications.

- 12-plait braided core of Technora fibres, which can be pre-stretched on request
- Polyester cover • Of all aramids, Technora
- has the best linear density and resistance to bending fatique.
- Ideal for static applications · Other Aramids (Kevlar, Twa
 - ron) available on request

GeoTwin

GeoTwin Polyester

Der ungeschlagene Klassiker – mit Bestnoten in Sachen Festigkeit, Handling und Langlebigkeit.

- Exzellente Bruchkraft und geringe Dehnung
- · Bleibt immer flexibel und verhärtet nicht
- Geringe Wasseraufnahme
- Nach Kundenwunsch mit GEOGARD MARINE FINISH
- (Tasmania) oder aus hochwertigem gewachstem Markenpolyester (Gemini X)
- Sehr gute Abriebfestigkeit
- und navyblue

• Lieferbar in weiß, schwarz

GeoTwin Polyamid

Hohe Dehnung, hohe Festigkeit. Exzellentes Absorptionsverhalten bei Schlägen und Schwelllasten.

- Flexible Seilkonstruktion mit exzellenter Bruchkraft Besonders geeignet als
- Schiffsfestmacher • Gute Abriebfestigkeit
- Das GEOGARD Finish vermindert Materialverhärtung durch Witterungseinflüsse
- Lieferbar in weiß und
- schwarz

GeoTwin Plus

So universell wie kein anderes: Mit ausgeglichenem Dehnungsverhalten und hoher Festigkeit.

Oberwasser ... alle Vorzüge einer überlegenen Kon-

struktion in einem preiswerten, schwimmfähigen Seil.

- Flexible Seilkonstruktion mit exzellenter Bruchkraft
- Kern und Mantel aus hochfesten Gleistein Plus Garnen, Mantel auf Wunsch mit GEOLAN Imprägnierung für verbesserte Abriebfestigkeit

GeoTwin GeoProp

• Flexible Seilkonstruktion

hochfesten Polypropylen

Multifilamentfasern mit

GEOLAN Imprägnierung

für verbesserte Abrieb-

festigkeit

mit hoher Festigkeit

Kern und Mantel aus

- Mittlere Seildehnung,
- Geringe Wasseraufnahme

• Lieferbar in grün-weiß

daher vielfältig einsetzbar

meliert. Auf Sonderwunsch auch in weiß oder schwarz

• Mittlere Seildehnung,

• Lieferbar in weiß oder

Schwimmfähig

schwarz

daher vielfältig einsetzbar

• Geringe Wasseraufnahme

GeoTwin Polyester

The ultimate classic – superior performance in break load, handling and longevity.

- Excellent break load with minimum elongation
- Lifetime flexibility without work-hardening
- Minimum water absorption Available with GEOGARD MARINE FINISH (Tasmania)
- or high quality pre-waxed polyester (Gemini X)
- Excellent abrasion resistance
- Available in white, black or navy blue

GeoTwin Polyamide/Nylon

High elongation, high tenacity. Excellent shock load absorption characteristics.

- Flexible construction with excellent break load
- High elongation, ideal for mooring lines
- Good abrasion resistance
- GEOGARD MARINE FINISH minimizes work hardening
- Available in white and black

© GeoTwin Plus

Multi-functional: balanced elongation with high tenacity.

- Flexible construction with excellent break load
- Core and cover made from Gleistein Plus yarns, cover available with GEOLAN impregnation to improve abrasion resistance.
- Moderate elongation producing a good multi-purpose rope
- Minimum water absorption
- Available in green/white. On special request in black or white

GeoTwin GeoProp

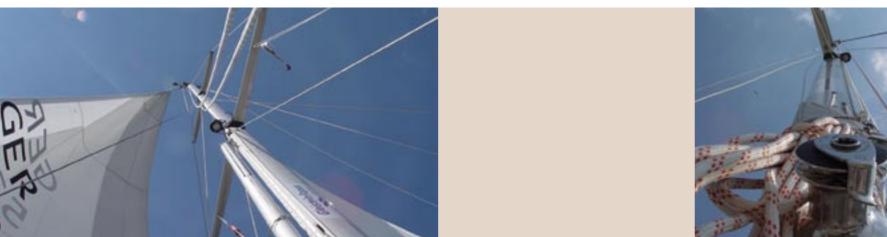
All the benefits of a proven construction in an economic, floating rope.

- Flexible construction with high break load
- Core and cover made from high tenacity PP multifilament yarns, with GEOLAN impregnation to improve abrasion resistance.
- Moderate elongation, hence a good multipurpose rope
- Minimum water absorption
- Floats · Available in black or white

Detaillierte Informationen über die verwendeten Rohstoffe und ihre spezifischen Eigenschaften: Seiten 76 - 77. Detailed information on raw materials and their specific properties on pages 76 – 77.

PES

MegaTwin																																
Ø in mm	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	52	56	60	64	72	80	88	96	
MegaTwin Dyn	eema	PES																														
kg/100m									28,0	33,0	39,0		46,0		60		76		94		114		135	159								
Bl. in kN									190,0	230,0	255,0		317,0		410		510		624		750		885	1032								
MegaTwin Dyn	eema	PES H	S																													
kg/100m									28,0	31,0	37,0	48,0	53,0	58,0	63	68	82	88	97	103	117		131									
Bl. in kN									240,0	280,0	380,0	440,0	515,0	590,0	665	740	815	890	1.025	1.100	1.320		1.540									
MegaTwin Dyn	eema	Plus																														
kg/100m											28,0	31,0	38,0	43,0	48	54	60	75	82	90	97	106	114	123								
Bl. in kN											230,0	255,0	280,0	317,0	360	405	460	510	570	625	670	750	800	870								
MegaTwin Dyn	eema	Plus H	IS																													
kg/100m											29,0	32,0	39,0	43,0	48	53	58	71	76	81	89	94	107	120								
Bl. in kN											240,0	280,0	380,0	440,0	515	590	665	740	815	890	1.025	1.100	1.320	1.540								
MegaTwin Vec	tran																															
kg/100m	2,3	2,8	4,7	7,5	11,2	14,6	19,2	24,7	29,2	35,8	42,6		58,0		75,8		95,9		118		143		171	200	232	267	303	384	474	573	682	
Bl. in kN	10,0	13,0	24,5	39,0	60,0	78,0	97,0	123,0	146,0	180,0	220,0		296,0		385,0		485,0		596		717		844	981	1.126	1.279	1.440	1.804	2.203	2.637	3.104	
MegaTwin Tech	nora																															
kg/100m	1,9	2,6	4,6	7,8	11,5	15,0	19,5	25,5	31,0	37,5	44,6		60,8		79,4		100,4		124		150		179	210	243	279	317	402	496	600	714	
Bl. in kN	9,0	13,0	26,0	35,0	66,0	75,0	95,0	132,0	155,0	183,0	215,0		292,0		379,0		477,0		587		705		836	974	1.125	1.283	1.454	1.828	2.247	2.701	3.214	



Bei Durchmessern größer als 52 mm empfiehlt sich eine **MegaMooring**-Konstruktion / see **MegaMooring** for diameters over 52 mm

Polyester Ø in mm 5 6 8 10 12 14 16 18 20 22 24 28 32 36 40 44 48 52 56 60 64 72 80 88 96 GeoTwin Polyester kg/100m 1,60 2,20 4,00 6,80 9,3 13,0 18,8 23,4 30,0 37,3 43,4 59,0 78,0 98,8 121 147 177 204 239 274 313 394 487 591 701 Bl. in kN 6,00 8,00 12,00 20,0 29,0 36,0 48,0 61,0 80,0 99,0 115,0 158,0 198,0 262,0 326 380 455 535 625 715 810 977 1.245 1.500 1.755 **GeoTwin Polyester** (Type Gemini X) kg/100m 1,60 2,60 4,00 6,50 9,3 13,0 18,3 23,3 29,0 35,0 42,0 59,0 77,5 98,0 122 146 176 205 238 273 311 393 485 590 700 Bl. in kN 7,00 11,00 15,00 24,00 36,0 45,0 65,0 83,0 100,0 122,0 145,0 196,0 255,0 321,0 394 473 559 645 743 848 947 1.191 1.461 1.722 2.016

Polypropy	len /	Poly	prop	ylei	ne																									
Ø in mm	5	6	8	10	12	14	16	18	20	22	24	28	32	36	40	44	48		52	56	60	64	72	80	88	96				
GeoTwin Plus																														
kg/100m									20,0		27,0	37,0	49,0	62,0	76	92	110		129	149	171	195	246	304	368	438				
Bl. in kN									80,0		109,0	148,0	192,0	241,0	297	357	423		493	569	650	736	926	1.137	1.369	1.620				
GeoTwin GeoF	Prop																													
kg/100m									16,0	19,6	28,5	39,0	51,0	64,0	79	96	114		134	156	178	203	256	317	384	457				
Bl. in kN									48,0	58,0	68,0	94,0	122,0	150,0	190	230	275		325	351	430	490	620	760	1.000	1.100				
•			m		1	سا				/								1		7	7				_	_				



One

So einfach, so effektiv: Bei One bestimmt ein tragendes Geflecht die technischen Eigenschaften ... und eröffnet damit unendlich viele Möglichkeiten vom textilen Drahtseilersatz bis zur elastischen Sicherheitsleine

So simple, so effective: One load-bearing braid determines the technical characteristics – and creates numerous possibilites: From textile wire replacements to elastic security lines

MegaOne

- fibres such as PBO (Zylon), Kevlar or Twaron are available on request
- Proprietory coatings GEO-THANE or GEOTHANE HD are available in various colours. These Gleistein coatings protect the products from weathering, improve abrasion resistance and protect the valuable high modulus
- DynaOne ropes are also available in heat set form. This procedure leads to an increase in linear tenacity and reduced constructional stretch together with
- · VectraOne and TechnaOne are available in pre-stretched form to minimize constructional stretch and to align the structure of the braid

- 12-plait braids from various high modulus raw materials like Dyneema SK75 (DynaOne), Vectran (VectraOne) and Technora (TechnaOne)
- Other high modulus

- reduced diameter.

Die pure Kraft. Rundgeflechte aus hochmodularen Fasern bieten unübertroffene Leistungswerte durch eine optimale Materialausnutzung! Eine hochwertige Beschichtung bringt effektiven Schutz gegen Witterung und Abrieb.

Pure strength. A round braid of high modulus fibres offering unbeatable performance through the optimum conversion of the raw material's characteristics. A high quality coating provides additional protection against weathering and abrasion.

Ein Prinzip macht die Runde: Die richtige Lösung für jede Anwendung! Die GeoOne Familie bietet fast alles - von der festen Schnur über die flexible Universalleine bis zum hoch dehnenden Spiralgeflecht.

suitable product for every application! The GeoOne family offers nearly everything - from tough cords, through flexible multi-purpose lines to high elongation solid braids.

The all-round solution: The

• 8-er, 12-er, 16-er, 20-er und 24-er Rundgeflechte aus hochfesten Fasern, ab 16-er normalerweise mit Fasereinlage zur Stabilisierung des runden Querschnitts. Die Fasereinlage besteht aus parallelen oder gerundeten Garnen

GeoOne

- Auf Wunsch sind auch 8-er und 12-er Rundgeflechte mit Einlage lieferbar
- GeoOne Rundgeflechte werden aus einer symmetrischen Anzahl von Litzen gebildet, die aus linksund rechtsgedrehten Garnen bestehen, und sind daher drehungsneutral
- · GeoOne Seile sind besonders vielseitig einsetzbar
- Eine Vielzahl maßgeschneiderter Sonderkonstruktionen ist möglich.

- Gleistein's ONE construction is available in 8-, 12-, 16-, 20- and 24-plait braids. 16-, 20- and 24plaits usually have a core component, which comprises of parallel or laid filaments
- 8- and 12-plait braids have no core component unless requested otherwise
- Braids are formed from a symmetrical number of strands composed from left and right-hand laid yarns, providing a nonrotating and torque free construction
- A large number of constructions with an unlimited number of applications is available

• 12-er Rundgeflechte aus

den verschiedenen hoch-

modularen Rohstoffen,

wie Dyneema SK75 (Dyna-

One), Vectran (VectraOne)

und Technora (TechnaOne)

sern wie PBO, Kevlar oder

Andere hochmodulare Fa-

Twaron auf Wunsch

Spezialbeschichtungen

aus GEOTHANE oder

GEOTHANE HD in ver-

schiedenen Farben. Sie

bieten Schutz vor Witte-

rungseinflüssen, erhöhen

die Abriebfestigkeit und

schließen die Oberflächen

der wertvollen Hochmo-

• DynaOne Seile sind auch

in thermisch gereckter

Ausführung lieferbar. Da-

bei erhöht sich die lineare

Festigkeit, die konstruk-

tionsbedingte Dehnung

wird auch der Seildurch-

wird minimiert. Dabei

· VectraOne und Techna-

One sind in kalt gereck-

ter Ausführung lieferbar.

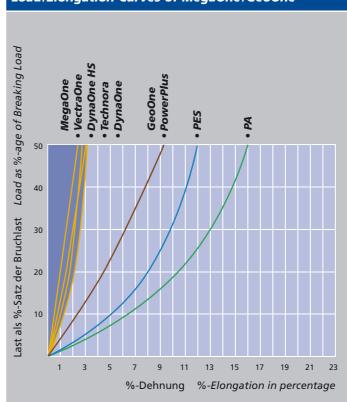
Das minimiert die Kon-

struktionsdehnung und

vergleichmäßigt die Ge-

messer reduziert.

flechtsstruktur


dulfasern

• Similar, or higher tenacity compared to wire ropes, spliced constructions

Kraft-Dehnungsdiagramm MegaOne/GeoOne

Load/Elongation Curves of MegaOne/GeoOne

Vom dünnen Geflecht zum Anbändseln über Jalousienschnüre bis zum 96 mm starken Schiffsfestmacher als 12-er Geflecht ist nahezu alles lieferbar. Zum Beispiel auch genau Ihr Seil, für Ihre Spezialanwendung

- Durch lange Flechtlängen entstehen sehr flexible Seile, die zudem spleißbar sind. Kurze Flechtlängen führen zu härteren, unflexibleren Seilen mit eingeschränkter Spleißbarkeit
- Eine Sonderform ist das Spiralgeflecht. Es weist einen besonders formstabilen runden Querschnitt auf und ist sehr elastisch bei verminderter Festig-

twines, to 96 mm strong 12-plait mooring lines, the possibilities are endless! Choose the suitable rope for your application

From tiny blind cords and

- Flexible and easy-tosplice ropes are achieved through longer braid lengths. Shorter braid lengths prove to be harder, non-flexible ropes with limited splicing ability
- Solid braids are unique in that they are constructed from strands that are laid in one direction and then braided in one direction. From this process a round rope with a very stable cross section and high elongation is achieved

PA

MegaOne

O DynaOne

Hält mehr, als ein Drahtseil verspricht! Überlegene Festigkeit, minimale Dehnung, Achtel der Masse.

- SK75 Fasern
- GEOTHANE oder GEO-THANE HD Coatings für verbesserten Witterungsund Abriebschutz
- 12er Geflecht aus Dyneema Aufgrund unelastischer Dehnung (=Kriechen) unter Dauerlast weniger für statischen Einsatz geeignet

Hart, aber gereckt ... nochmals optimierte Festigkeit

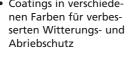
und Dehnung durch Gleistein Heat Set Prozess! • 12er Geflecht aus

Dyneema SK75 Fasern • Thermisch gereckt

DynaOne HS

- für höhere Festigkeit und minimierte Konstruktionsdehnung und Durchmesser
- GEOTHANE oder GEO-THANE HD Coatings für
- verbesserten Witterungsund Abriebschutz
- Aufgrund unelastischer Dehnung (= Kriechen) unter Dauerlast weniger für statischen Einsatz geeignet

VectraOne Kompromisslos in Festigkeit und Dehnung, kein


Kriechen unter Last: perfekt für statischen Einsatz.

- Vectran Fasern
- Auf Wunsch gereckt für minimierte Dehnung und gleichmäßigere Geflechtstruktur
- Coatings in verschiedenen Farben für verbesserten Witterungs- und Abriebschutz

TechnaOne

Hält viel, dehnt kaum, kriecht gar nicht ... Die ökonomische Lösung für statischen Einsatz.

- Technora Aramid Fasern
- Auf Wunsch gereckt für minimierte Dehnung und gleichmäßigere Geflechtstruktur
- Coatings in verschiedenen Farben für verbesserten Witterungs- und Abriebschutz

DynaOne

The wire rope replacement. Proven break strength, minimum elongation, 1/8th of wire rope weight.

- 12 plait out of Dyneema SK75 filament
- GEOTHANE or GEOTHANE HD coatings for enhanced resistance to weathering and abrasion
- Due to creep characteristics of material it is not ideal for static applications

OpnaOne HS

Tough and stretched - improved tenacity and minimised stretch through Gleistein Heat Set Process!

- 12 plait out of Dyneema SK75 filament
- Thermally stretched for enhanced break load and minimized constructional stretch and diameter
- GEOTHANE or GEOTHANE HD coatings for enhanced
- resistance to weathering and abrasion
- Due to creep characteristics of material it is not ideal for static applications

VectraOne

Maximum tenacity with minimum elongation, zero creep under load: Perfect for static load applications.

- Vectran fibre
- Pre-stretched on request to minimize elongation and to align structure of the hraid
- · Coated for enhanced protection against weathering and increased abrasion

TechnaOne

High strength, low elongation and zero creep the economic solution for the static application.

- Technora Aramid fibre
- Pre-stretched on request to minimize elongation and to align structure of the braid
- · Coated for enhanced protection against weathering and increased abrasion resistance

GeoOne

GeoOne Polyester

Der ungeschlagene Klassiker – mit Bestnoten in Sachen Festigkeit, Handling und Langlebigkeit.

- In weiß mit blauem Kennfaden oder in den Grundfarben lieferbar
- Sehr gute Seilfestigkeit
- Exzellente Abrieb- und **UV** Beständigkeit

- Geringe Dehnung
- Kein Verhärten
- Nicht schwimmfähig

GeoOne Polyamid

Hohe Dehnung, hohe Festigkeit. Exzellentes Absorptionsverhalten bei Schlägen und Schwelllasten.

- Ganz weiß oder in den Grundfarben lieferbar
- Hervorragende Seilfestigkeit
- Hohe Dehnung
- Gute Abrieb- und UV Beständigkeit
- · Kann durch Bewitterung verhärten
- · Nicht schwimmfähig.

GeoOne PowerPlus 12

Unerreicht universell: mit ausgeglichenem Dehnungsverhalten und sehr hoher Festigkeit.

- Grün/weiß meliert, aus Gleistein Plus Garnen als 12-er Geflechte
- Sehr gute Seilfestigkeit
- Mittlere Dehnung
- **UV** Beständigkeit Kein Verhärten
- · Nicht schwimmfähig

• Gute Abrieb- und

• GeoOne Power 12

Universell und leicht: schwimmfähig, mit ausgeglichenem Dehnungsverhalten und hoher Festigkeit.

- Seegrün aus Polysteel Garnen als 12-er Geflechte
- Hohe Seilfestiakeit Mittlere Dehnung
- Befriedigende Abriebund UV Beständigkeit
- Kein Verhärten Schwimmfähig
- Ausgezeichnetes Preis-Leistungsverhältnis

• GeoOne GeoProp

Oberwasser ... alle Vorzüge einer überlegenen Konstruktion in einem schwimmfähigen, preiswerten Seil.

- In weiß oder den Grundfarben lieferbar
- Gute Seilfestigkeit
- Mittlere Dehnung
- Schwimmfähig
- und UV Beständigkeit Kein Verhärten
- Ausgezeichnetes Preis-Leistungsverhältnis

• Befriedigende Abrieb-

GeoOne Hempex

Preiswertes Seil mit Look und Griffigkeit von Hanf und allen Vorteilen einer modernen Faser.

- Naturfarben aus Polypropylen Stapelfasern • Idealer Ersatz für Hanfseile
- 8-er und 16-er Geflechte
- Gute Seilfestigkeit • Geringe Dehnung
- Befriedigende Abriebund UV Beständigkeit • Kein Verhärten
- Schwimmfähig
- Ausgezeichnetes Preis-Leistungsverhältnis

Detailed information on raw materials and their specific properties on pages 76–77.

Detaillierte Informationen über die verwendeten Rohstoffe und ihre spezifischen Eigenschaften: Seiten 76-77.

GeoOne Polyester

The ultimate classic – Superior performance in break load, handling and longevity.

- · Available in white with blue marker. Other colours available
- Excellent tenacity
- Low elongation
- Excellent abrasion- and UV resistance
- Does not work-harden in extreme conditions
- Negative buoyancy

○ GeoOne Polyamide/Nylon

High elongation, high tenacity. Excellent shock load absorption characteristics.

- Available in plain white and other colours
- High elongation
- High absorbtion capacity
- · Good abrasion- and UV resistance • May harden due to
- weathering
- Negative buoyancy

Good abrasion and

• Does not work-harden in

• Reasonable abrasion- and

• Does not work-harden in

extreme conditions

UV resistance

• Buoyant

extreme conditions

Negative buoyancy

UV resistance

GeoOne PowerPlus 12

The universal solution: balanced elongation and very high tenacity.

- GeoOne PowerPlus 12: produced in green/white mix from Gleistein Plus yarns as a 12-plait.
- · Good tenacity
- Medium elongation

• GeoOne Power 12

Multi-functional and lightweight: a floating rope with moderate elongation and high break strength characteristics.

- Produced in seagreen from polysteel varns as a 12-plait
- High tenacity
- Moderate elongation
- Economic
- GeoOne GeoProp

All the strengths of a conventional construction in a buoyant, economic rope.

- Available in white and other colours
- Moderate tenacity
- Medium elongation
- Buoyant
- Reasonable abrasionand UV resistance
- · Does not work-harden in extreme conditions Economic

GeoOne Hempex

Economical rope with the look and feel of hemp and with all the positive characteristics of modern synthetic fibres.

- Available in natural hemp colour from polypropylene staple fibres
- Ideal replacement for hemp ropes • 8 or 16-plait braids
- Good tenacity
- Low elongation Reasonable abrasion-
- and UV resistance • Does not work-harden in
- extreme conditions • Buoyant
- Economic

MegaOne																																
Ø in mm	4	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	44	48	52	56	60	64	68	72	80	88	96	
DynaOne																																
kg/100m	0,8	1,4	2,0	4,0	6,6	8,5	10,5	12,7	16,5	20,0	24,3	28,5	33,0	39,0	45,6	50,7	55,7	60,8	71,0	76	92	107	125	145	167	190	210	240	296	358	426	
Bl. in kN	12	23	27	50	85	115	142	170	220	265	325	380	440	520	610	680	745	810	945	1.003	1.195	1.405	1.625	1.855	2.100	2.350	2.650	2.930	3.550	4.220	4.940	
DynaOne HS																																
kg/100m	0,9	1,6	2,2	4,4	7,5	9,6	13,5	15,3	20,5	23,5	27,5	31,5	35,5	43,0	48,0	55,5	60,3	66,5	78,0	84												
Bl. in kN	17	29	37	75	99	170	240	280	380	440	515	590	665	740	815	890	1025	1.100	1.320	1.540												
TechnaOne																																
kg/100m	1,1	2,0	2,8	5,0	8,0	12,0	15,0	19,6	24,8	30,6	37,0	44,0	51,6	59,9	68,8	78,2	88,3	99,0	110,3	122	148	176	207	240	275	313	353	396	489	592	704	
Bl. in kN	14	23	33	58	95	140	170	215	265	320	380	445	520	600	680	760	850	950	1.050	1.150	1.350	1.600	1.850	2.150	2.450	2.750	3.050	3.400	4.150	4.950	5.800	
VectraOne																																
kg/100m	1,3	2,0	2,9	5,1	8,0	12,9	15,7	20,4	25,9	31,9	38,7	46,0	54,0	62,6	71,9	81,8	92,3	103,5	115,3	128	155	184	216	250	288	327	369	414	511	618	736	
Bl. in kN	14	22	31	55	85	135	160	205	255	310	375	440	510	585	665	750	840	930	1.025	1.120	1.330	1.580	1.830	2.100	2.380	2.680	3.000	3.310	4.030	4.820	5.650	

Polyester																																	
Ø in mm			2					6	8	10	12	14	16	18		22		28	30	32	36	40	44	48	52	56	60	64	72	80	88	96	
GeoOne Polye	_			_			_									_	olyest	er 12-fach	geflo	chten /	12-plait												
kg/100m	0,08	0,14	0,22	0,35	0,61	1,10	1,72	2,44	4,35	6,80					30,0	35,0	44,0	59,7		78,0	98,7	122	147	175	206	239	274	312	395	487	590	702	
Bl. In kN	0,20	0,40	0,75	1,05	1,50	2,70	4,20	5,90	10,30	16,30					90,0	103,0	128,0	173,0		225,0	282,0	346	416	491	572	659	751	848	1.066	1.306	1.569	1.853	2.2.2m.e.c.
GeoOne Polye	ster 16-	fach ge	eflochte	en / 16	-plait D	OIN 833	307																										
kg/100m			0,22	0,35	0,61	1,10	1,72	2,44	4,35	6,80	9,8	13,3	17,4																				
Bl. In kN			0,75	1,05	1,50	2,70	4,20	5,90	10,30	16,30	22,9	30,3	39,0																				
GeoOne Polye	ster spir	algefl	ochten	/ solid	braid																												
kg/100m					0,61	1,10	1,72	2,44	4,35	6,80	9,80	13,3	17,4																				
Bl. In kN					1,31	2,20	3,30	4,60	7,80	12,30	17,2	22,6	28,9																				
Dobromid	Dolor		Jo (8		-)																												
Polyamid /				_	_												_		_														
Ø in mm			2		3	4		6	8	10	12	14	16	18	20		24	28	30	32	36	40	44	48	52	56	60	64	72	80	88	96	
GeoOne Polya																		id / Polya		(Nylor	12 -fa												
kg/100m	0,07	0,13	0,18	0,28	0,51	0,90	1,40	2,00	3,60	5,60					24,5	30,5	38,0	48,0		62,7	79,3	98	119	141	166	192	220	251	317	392	474	564	
Bl. in kN	0,30	0,49	0,93	1,37	1,55	2,70	4,20	6,10	10,90	16,50					92,0	114,0	141,0	178,0		231,0	290,0	357	429	508	593	684	780	883	1.111	1.356	1.631	1.918	**************************************
GeoOne Polya	mid / Po	olyan	nide (I	Vylon,) 16-fa	ch gef	flochte	n / 16-µ	olait DI	N 8330	7																			·			
kg/100m			0,18	0,28	0,51	0,90	1,40	2,00	3,60	5,60	8,1	11,0	14,3																				
Bl. in kN			0,93	1,37	1,57	2,70	4,20	6,10	10,90	16,70	24,2	32,0	42,6																				
GeoOne Polya	mid / Po	olyan	nide (I	Vylon,) spira	lgefloc	chten /	solid b	raid D	IN 8330)7																						
kg/100m					0,51	0,90	1,40	2,00	3,60	5,60	8,1	11,0	14,3																				
Bl. in kN																																	
					1,90	2,20	3,30	4,90	8,80	13,70	19,8	25,8	34,4																				
ZII III KIV					1,90	2,20	3,30	4,90	8,80	13,70	19,8	25,8	34,4																				
						2,20	3,30	4,90	8,80	13,70	19,8	25,8	34,4																				
Polypropyl	len / F	Poly	prop	ylen		2,20	3,30	4,90	8,80	13,70	19,8	25,8	34,4																				
Polypropyl			prop 2		ie					13,70		25,8 14			20	22	24	28	30	32	36	40	44	48	52	56	60	64	72	80	88	96	
Polypropyl ø mm	1	1,5	2	2,5	1 e	4									20	22	24	28	30	32	36	40	44	48	52	56	60	64	72	80	88	96	
Polypropyl 3 mm GeoOne Powel	1	1,5	2	2,5	1 e	4						14	16				24			32					52							96	
Polypropyl Ø mm GeoOne Powe l kg/100m	1	1,5	2	2,5	1 e	4					12 5,5	14	9,8	18	18,5			35,5	42,5	48,5	61,5	76	93	110	128	150	170	194	245	300	365		
Polypropyl Ø mm GeoOne Powel kg/100m BI. In kN	1 rPlus 12	1,5 2 12-f	2 ach gef	2,5 ilochte	3 n / 12-p	4					12 5,5	7,5	9,8	18	18,5		27,5	35,5	42,5	48,5	61,5	76	93	110	128	150	170	194	245	300	365	435	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power	1 rPlus 12	1,5 2 12-f	2 ach gef	2,5 ilochte	3 n / 12-p	4					12 5,5	7,5 33,0	9,8 43,0	18	18,5 76,0		27,5	35,5 135,0	42,5 164,0	48,5	61,5 234,0	76 285	93	110 410	128 475	150 555	170 626	194 710	245 895	300 1.100	365 1.330	435	
Polypropyl	1 rPlus 12	1,5 2 12-f	2 ach gef	2,5 ilochte	3 n / 12-p	4					5,5 27,0	7,5 33,0	9,8 43,0	18 12,4 60,0	18,5 76,0 17,0		27,5 105,0	35,5 135,0 34,0	42,5 164,0 41,0	48,5 186,0 46,0	61,5 234,0 59,0	76 285 72	93 349 88	110 410	128 475	150 555 142	170 626 163	194 710 185	245 895 234	300 1.100 290	365 1.330 351	435 1.575	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN	1 rPlus 12 r 12 12	1,5 2 12-f	2 ach gef	2,5 Flochte	3 n / 12-p	4 plait	5				5,5 27,0	7,5 33,0	9,8 43,0	18 12,4 60,0	18,5 76,0 17,0 70,0		27,5 105,0 26,0 96,0	35,5 135,0 34,0 125,0	42,5 164,0 41,0 150,0	48,5 186,0 46,0 170,0	61,5 234,0 59,0 216,0	76 285 72	93 349 88	110 410	128 475	150 555 142	170 626 163	194 710 185	245 895 234	300 1.100 290	365 1.330 351	435 1.575 417	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr	1 rPlus 12 r 12 12 rop 8-fa	1,5 2 12-f	ach gef	2,5 Flochte	3 n / 12-p plait	4 <i>plait</i> 83307	5	6	8	10	5,5 27,0	7,5 33,0	9,8 43,0	18 12,4 60,0	18,5 76,0 17,0 70,0 Geo	One (27,5 105,0 26,0 96,0	35,5 135,0 34,0 125,0	42,5 164,0 41,0 150,0	5 48,5) 186,0) 46,0) 170,0) ten / 12	61,5 234,0 59,0 216,0	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m	1 rPlus 12 r 12 12- rop 8-fa 0,08	1,5 2 12-f	2 ach gef eflocht	2,5 Flochte re / 12-p	3 n / 12-p olait ait DIN 0,40	83307 0,70	1,10	1,55	2,60	4,00	5,5 27,0	7,5 33,0	9,8 43,0	18 12,4 60,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12 rop 8-fa 0,08 0,30	1,5 2 12-f. -fach g ch gef 0,10 0,38	2 ach gef eflocht lochter 0,16 0,70	2,5 Flochte See / 12-p 0,23 0,95	olait ait DIN 0,40 1,50	83307 0,70 3,00	1,10	1,55	2,60	4,00	5,5 27,0	7,5 33,0	9,8 43,0	18 12,4 60,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0	35,5 135,0 34,0 125,0	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12 rop 8-fa 0,08 0,30	1,5 2 12-f. -fach g ch gef 0,10 0,38	2 ach gef eflocht lochter 0,16 0,70 eflochte	2,5 flochte a / 8-pla 0,23 0,95 en / 16-	olait	83307 0,70 3,00 IN 8330	1,10 4,50	1,55 5,20	2,60 9,00	4,00	5,5 27,0 5,3 26,0	7,5 33,0 6,5 30,0	9,8 43,0 9,0 40,0	12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12 rop 8-fa 0,08 0,30	1,5 2 12-f. -fach g ch gef 0,10 0,38	ach gef leflochter 0,16 0,70 eflochtee	2,5 Flochte on / 8-pla 0,23 0,95 en / 16-, 0,23	olait ait DIN 0,40 1,50 plait D 0,40	83307 0,70 3,00 IN 8330 0,70	1,10 4,50 07 1,10	1,55 5,20	2,60 9,00 2,60	4,00 13,00 4,00	5,5 27,0 5,3 26,0	7,5 33,0 6,5 30,0	9,8 43,0 9,0 40,0	12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12- rop 8-fa 0,08 0,30 rop 16-f	1,5 2 12-fach gef 0,10 0,38 ach ge	2 ach gef eflochter 0,16 0,70 eflochter 0,16	2,5 Flochte 2,6 1,0 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	olait ait DIN 0,40 1,50 0,40 1,50	83307 0,70 3,00 IN 8330 0,70 3,00	1,10 4,50 07 1,10 4,50	1,55 5,20	2,60 9,00 2,60	4,00	5,5 27,0 5,3 26,0	7,5 33,0 6,5 30,0	9,8 43,0 9,0 40,0	12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12- rop 8-fa 0,08 0,30 rop 16-f	1,5 2 12-fach gef 0,10 0,38 ach ge	2 ach gef eflochter 0,16 0,70 eflochter 0,16	2,5 Flochte 2,6 1,0 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	olait ol	83307 0,70 3,00 IN 833 0,70 3,00 IN 833	1,10 4,50 07 1,10 4,50	1,55 5,20 1,55 5,20	2,60 9,00 2,60 9,00	4,00 13,00 4,00 13,00	5,5 27,0 5,3 26,0	7,5 33,0 6,5 30,0	9,8 43,0 9,0 40,0	12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12- rop 8-fa 0,08 0,30 rop 16-f	1,5 2 12-fach gef 0,10 0,38 ach ge	2 ach gef eflochter 0,16 0,70 eflochter 0,16	2,5 Flochte 2,6 1,0 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	olait ait DIN 0,40 1,50 plait D 0,40 1,50 braid D 0,40	83307 0,70 3,00 IN 833 0,70 3,00 OIN 833	1,10 4,50 07 1,10 4,50 307 1,10	1,55 5,20 1,55 5,20	2,60 9,00 2,60 9,00	4,00 13,00 4,00 4,00	5,5 27,0 5,3 26,0 5,5 18,0	7,5 33,0 6,5 30,0 7,9 24,0	9,8 43,0 9,0 40,0	18 12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12- rop 8-fa 0,08 0,30 rop 16-f	th gef 0,10 0,38 ach ge	eflochter 0,16 0,70 eflochter 0,16 0,70 ochten	2,5 Flochte o,23 0,95 en / 16-, 0,23 0,95	olait ait DIN 0,40 1,50 plait D 0,40 1,50 braid D 0,40 0,70	83307 0,70 3,00 IN 833 0,70 3,00 0IN 833	1,10 4,50 07 1,10 4,50 307 1,10 2,50	1,55 5,20 1,55 5,20	2,60 9,00 2,60 9,00 5,00	4,00 13,00 4,00 13,00	5,5 27,0 5,3 26,0 5,5 18,0	7,5 33,0 6,5 30,0 7,9 24,0	9,8 43,0 9,0 40,0	18 12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12- rop 8-fa 0,08 0,30 rop 16-f	th gef 0,10 0,38 ach ge	eflochter 0,16 0,70 eflochter 0,16 0,70 ochten	2,5 Flochte o,23 0,95 en / 16-, 0,23 0,95	olait ait DIN 0,40 1,50 plait D 0,40 1,50 braid D 0,40 0,70	83307 0,70 3,00 IN 833 0,70 3,00 OIN 833 0,70 1,40	1,10 4,50 07 1,10 4,50 307 1,10 2,50	1,55 5,20 1,55 5,20	2,60 9,00 2,60 9,00 5,00	4,00 13,00 4,00 4,00	5,5 27,0 5,3 26,0 5,5 18,0	7,5 33,0 6,5 30,0 7,9 24,0	9,8 43,0 9,0 40,0	18 12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	
Polypropyl Ø mm GeoOne Power kg/100m Bl. In kN GeoOne Power kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN GeoOne GeoPr kg/100m Bl. In kN	1 rPlus 12 r 12 12- rop 8-fa 0,08 0,30 rop 16-f	th gef 0,10 0,38 ach ge	eflochter 0,16 0,70 eflochter 0,16 0,70 ochten	2,5 Flochte o,23 0,95 en / 16-, 0,23 0,95	olait ait DIN 0,40 1,50 plait D 0,40 1,50 braid D 0,40 0,70 ochten	83307 0,70 3,00 IN 833 0,70 3,00 IN 833 0,70 1,40	1,10 4,50 07 1,10 4,50 307 1,10 2,50 it and	1,55 5,20 1,55 5,20 1,55 3,10	2,60 9,00 2,60 9,00 5,00	4,00 13,00 4,00 4,00	5,5 27,0 5,3 26,0 5,5 18,0 5,8 11,0	7,5 33,0 6,5 30,0 7,9 24,0	9,8 43,0 9,0 40,0 10,2 30,0	18 12,4 60,0 11,5 50,0	18,5 76,0 17,0 70,0 Geo 18,0	One (27,5 105,0 26,0 96,0 5eoPro 26,0	35,5 135,0 34,0 125,0 p 12-fach g 35,5	42,5 164,0 41,0 150,0	6 48,5 186,0 186,0 170,0 170,0 46,0	61,5 234,0 59,0 216,0 -plait 58,5	76 285 72 266	93 349 88 333	110 410 104 387	128 475 122 445	150 555 142 510	170 626 163 583	194 710 185 666	245 895 234 828	300 1.100 290 1.020	365 1.330 351 1.225	435 1.575 417 1.450	

Square

Ein Seil mit Ecken und Kanten: Das preiswerte Quadratgeflecht ist unschlagbar robust und griffig, dabei hervorragend spleißbar, und hat deshalb als Schiffsfestmacher jeder anderen Konstruktion den Rang abgelaufen!

A rope with a square cross-section: The economical squareplait construction has high strength and good handleability together with excellent splicability and is thus head and shoulders above other mooring lines!

- Vier Litzenpaare aus hochmodularen Fasern werden durch die Mitte zu einem Geflecht mit annähernd quadratischem Querschnitt verflochten
- Durch den symmetrischen Seilaufbau aus vier gegenläufigen Litzenpaaren drehungsneutral
- GEOTHANE Beschichtung für verbesserte Witterungsund Abriebbeständigkeit
- MegaSquare-Tauwerk erreicht extreme Festigkeiten bei geringster Dehnung
- MegaSquare ist durch seine knubbelige Oberfläche besonders griffig
- Aufgrund der enormen Kräfte sind gespleißte Augen sorgfältig zu schützen und nur verstärkte Spezialkauschen zu verwenden
- MegaSquare Seile sind hervorragend spleißbar.
 Die Spleißtechnik bedarf einiger Erfahrung, ist aber leicht zu erlernen. Auf Wunsch führen wir diese Arbeiten gerne für Sie aus

- Square plait: 4 x 2 strands of high modulus fibres are plaited through the middle to form a quasi square cross section
- Torque free through balanced construction of four pairs of strands in opposite twist directions
- Transparent GEOTHANE coating to maximize abrasion resistance
- Wire-like tenacity in a compact, flexible and buoyant construction
- Minimum elongation at break
- It is recommended that splices are protected carefully and only quality thimbles with smooth surfaces are used to maximize abrasion resistance
- The splicing technique is straightforward and Gleistein are pleased to offer this service on request

MegaSquare

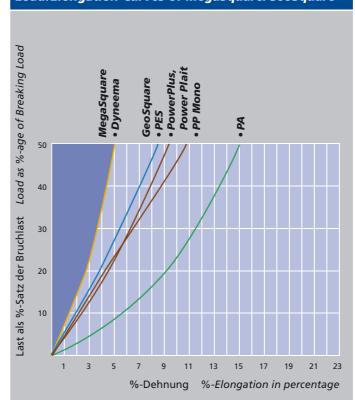
Höchstleistung im Quadrat. Hochmodulare Fasern bieten überragendes Festigkeitspotenzial – MegaSquare macht es unter härtesten Bedingungen nutzbar: Flexibel, dauerhaft und wirtschaftlich.

High performance squared:
High modulus fibres offering
convincing tenacity –
MegaSquare is an excellent
performer in the hardest
conditions: flexible, longlasting and economic.

GeoSquare

Volle Kraft kommt an! Drehungsneutral, hervorragend spleißbar, enorm robust bei relativ hoher Konstruktionsdehnung: Das Erfolgsrezept für die hervorragend bewährten GeoSquare Festmacher.

The GeoSquare mooring line is a proven, robust working rope. Torque-free with excellent splicability, that's the secret of its success.


- Vier Litzenpaare aus hochfesten Fasern werden durch die Mitte zu einem Geflecht mit annähernd quadratischem Querschnitt verflochten
- Durch den symmetrischen
 Seilaufbau aus vier gegenläufigen Litzenpaaren drehungsneutral
- Sehr gute Abriebbeständigkeit
- GeoSquare-Tauwerk erreicht große Festigkeiten bei mittlerer Konstruktionsdehnung
- Aufgrund der hohen Kräfte sind gespleißte Augen sorgfältig zu schützen

- Square plait: 4 x 2 strands of high tenacity fibres, plaited through the middle
- Torque free balanced construction of four pairs of strands in opposite twist directions
- Very good abrasion resistance
- High break load capacity with medium elongation at break
- It is recommended that splices are protected carefully and only quality thimbles with smooth surfaces are used to maximize abrasion resistance

Kraft-Dehnungsdiagramm MegaSquare/GeoSquare

Load/Elongation Curves of MegaSquare/GeoSquare

- GeoSquare ist durch seine knubbelige Oberfläche besonders griffig
- GeoSquare Seile sind hervorragend spleißbar. Die Spleißtechnik bedarf einiger Erfahrung, ist aber leicht zu erlernen. Auf Wunsch führen wir diese Arbeiten gerne für Sie aus
- The knobbly surface of this construction gives outstanding handling characteristics
- The splicing technique is straight forward and Gleistein is pleased to supply this extra service for you

MegaSquare

MegaSquare Dyneema

Gib Acht! Acht Litzen aus Dyneema: super stark, super standfest, super spleißbar.

- Rohstoff: Dyneema SK75 Fasern in weiß
- Transparente GEOTHANE Beschichtung für geschlossene Oberfläche und längere Lebensdauer
- Drahtseilähnliche Festigkeit in einem kompakten, flexiblen und schwimmfähigen Seil
- Gute Abriebbeständigkeit
- Exzellente UV-Beständigkeit

MegaSquare Dyneema

Gr-Eight!! Dyneema square plait with high strength ... spliceable.

- Raw material: Dyneema SK75 HMPE fibre in white
- Transparent GEOTHANE coating for sealed surface and enhanced life-expectancy
- Wire-like tenacity in a compact, flexible and buoyant construction
- Good abrasion resistance
- Excellent UV resistance

MegaSquare	е														
Ø mm	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
MegaSquare Dy	neem	a SK7	5												
kg/100m	8,9	11,8	15,4	19,5	25,3	26,5	30,4	35,5	40,5	45,6	50,7	55,7	60,8	71,0	76
Bl. In kN	115,0	155,0	210,0	265,0	344,0	358,0	410,0	475,0	545,0	610,0	680,0	745,0	810,0	945,0	1.003
Ø mm	44	48	52	56	60	64	72	80	88	96					
MegaSquare Dy	neem	a SK7	5												
kg/100m	91	107	125	145	167	190	240	296	358	426					
Bl. In kN	1.195	1.405	1.625	1.855	2.100	2.350	2.930	3.550	4.225	4.943					

GeoSquare

GeoSquare Polyester

Langlebigkeit macht sich bezahlt. Der kantige Typ fürs Grobe: Unschlagbar bei härtestem Einsatz.

Der ungeschlagene Schiffsfestmacher: Steckt mächtig

- Rohstoff: Polyester Endlosfaser weiß (mit blauem Kennfaden), schwarz oder navyblue
- Bis 40 mm Ø thermostabilisiert, Stabilisierung bis
 64 mm Ø lieferbar
- Hohe Abriebfestigkeit und Bruchkraft

GeoSquare Polyester

Longevity paying for itself. The strong performer for the hardest test.

- Raw material: HT continuous filament polyester fibre in white with a blue marker. Black and navy blue are also available
- Up to 40mmØ thermostabilized as standard. Stabilization up to 64mmØ possible
- High break strength and good abrasion resistance
- Excellent UV resistance and moderate elongation
- Negative buoyancy
- Manufactured to DIN EN 697 with up to 20% higher break strength.
- Due to their outstanding longevity GeoSquare Polyester are the most economic choice

GeoSquare Polyamide/Nylon

The indestructible heavyweight.

• Rohmaterial: Polyamid Endlosfasern in weiß oder

GeoSquare Polyamid

 Endlosfasern in weiß oder schwarz
 Bis 40 mm Ø thermostabilisiert, Stabilisierung bis

ein, dreht niemals auf.

- 64 mm Ø lieferbar

 Hohe Abriebfestigkeit und
 Bruchkraft
- Gute UV Beständigkeit und hohe Dehnung
- GeoSquare Polyamid ist nicht schwimmfähig

• Beste UV Beständigkeit

Nicht schwimmfähig

Festiakeiten

mischste Produkt

und geringe Dehnung

· Gefertigt nach DIN EN 697,

mit bis zu 20% höheren

• Wegen der überragenden

Lebensdauer das ökono-

- Nach DIN EN 696 mit bis zu 15% höheren Festigkeiten
- Raw material: HT continuous white or black polyamide fibre
- Up to 40mmØ thermostabilized as standard.
 Stabilization up to 64mmØ possible
- High break strength and good abrasion resistance
- Good UV resistance and high elongation
- Negative buoyancy
- In accordance with DIN EN 696 with up to 15% increase in break strength

GeoSquare

GeoSquare PowerPlus

GeoSquare PowerPlait

leicht, kraftvoll und flexibel.

• Rohstoff: Modifiziertes

orange

Schwimmfähig

oder schwarz

Schwimmfähig

Polypropylen (Polysteel) in seegrün mit Kennfäden

• Litzen von innen gewachst

und Abriebbeständigkeit

für minimierte Faser-Faser-

reibung, erhöhte Bruchkraft

GeoSquare GeoProp

• Rohstoff: hochfestes multi-

files Polypropylen in weiß

festigkeit, Bruchkraft und

UV Beständigkeit, dabei

• Befriedigende Abrieb-

mittlere Dehnung

Die Leistung eines Schwergewichts in einem Seil, das nicht untergeht.

Der Allrounder mit den ausgewogenen Eigenschaften:

- Rohstoffe: Innengarne Polysteel, Außengarne Gleistein Plus Garne in grün/weiß meliert
- GEOLAN Imprägnierung für minimierte Faser-Faserreibung, erhöhte Bruchkraft und Abriebbeständigkeit
- Sehr gute Bruchkraft und Abriebfestigkeit
- Sehr gute UV Beständigkeit, mittlere Dehnung
- Spezifisches Gewicht
 ca. 1 g/cm³, neutrales
 Schwimmverhalten
- Wegen des hohen Polyesteranteils auch ideal für die Tankschifffahrt

• Sehr gute Bruchkraft

bei befriedigender

Beständigkeit, mittlere

• Die Bruchkraftvorgaben

bis zu 30% übertroffen

Auf Wunsch mit GEOLAN

Sie ist wegen erhöh-

ter Bruchkraft und

dingt zu empfehlen

und DIN 83 334

Imprägnierung lieferbar.

Abriebbeständigkeit unbe-

• Gefertigt nach DIN EN 699

der DIN EN 699 werden um

Abriebfestigkeit

Befriedigende UV

Dehnung

Moderate elongation

GeoSquare PowerPlait

neutral buoyancy.

• Raw materials: Polysteel

· With GEOLAN impregna-

tion for excellent break

load and abrasion resis-

tance with good UV

resistance

centre yarns + Gleistein's

Plus outer yarns in green/

GeoSquare PowerPlus

The high performance heavyweight rope with

A general purpose rope with the balanced characteristics of lightness, strength and flexibility.

- Raw material: polysteel yarns in sea green with orange marker
- Strands are waxed internally to minimize inter-fibre friction and increase the break strength
- Positive buoyancy
- Good break strength and moderate abrasion resistance

• GeoSquare PowerPlus is

GEOLAN impregnation

the break strength and

· The high content of poly-

ester fibres, makes this line

ideal for tanker moorings

minimizes the fibre-to-fibre friction thereby increasing

neutrally buoyant

abrasion resistance

- Average UV resistance and moderate elongation
- Breaking load exceeds the requirements of DIN EN 699 by approximately 30%

GeoSquare GeoProp

Light, strong and torque-free with positive buoyancy and excellent spliceability.

- Raw material: continuous high tenacity polypropylene multifilament fibre, available in white or black
- Good break strength, reasonable UV and abrasion-resistance and moderate elongation
- Positive buoyancy
- Can be provided to order with GEOLAN impregnation which minimizes fibreto-fibre friction and increases the break strength and abrasion resistance. Its use is recommended
- Manufactured according to DIN EN 699 and to the former DIN 83 334

GeoSquare PP Monofil

Die unübertreffliche Leichtigkeit des Seils: schwimm-

fähig, verdrehsicher, hervorragend spleißbar.

Lässt sich nicht unterkriegen: preiswert, schwimmfähig, verdrehsicher und hervorragend spleißbar.

- Rohstoff: monofile Polypropylen Garne aus eigener Extrusion in schwarz, orange oder blau
- Litzen von innen gewachst für minimierte Faser-Faserreibung und erhöhte Bruchkraft
- Schwimmfähig
- Befriedigende Bruchkraft, Abriebfestigkeit und UV Beständigkeit, mittlere Dehnung
- Gefertigt nach DIN EN 699

GeoSquare PP Monofil

An economical, torque-free, floating rope with excellent spliceability.

- Raw material: high tenacity polypropylene monofil fibre from Gleistein's own extrusion process. Available in black, blue or orange
- The strands are waxed internally to minimize inter-fibre friction and increase break strength
- Good break strength with reasonable UV and abrasion resistance
- Moderate elongation Positive buoyancy
- Produced according to DIN EN 699

Coatings siehe Seite 73 / Coatings see page 73

GeoSquare

Polyester

Ø mm	12	14	16	18	20	22	24	26	28	30	32	36	40	44	48	52	56	60	64	68	72	80	88	96	104	112	120	128	136	144
GeoSquare Poly	vester	DIN EN	697																											
kg/100m	11,0	14,8	19,5	24,5	30,3	36,7	43,7	51,2	59,4	68,2	77,8	98,2	121	147	175	205	238	273	311	351	393	485	587	699	820	950	1.090	1.240	1.400	1.570
Bl. In kN	30,8	37,2	57,0	67,0	80,5	104,0	124,0	137,0	160,0	181,0	205,0	258,0	317	382	451	523	602	685	778	878	975	1.193	1.432	1.691	1.968	2.261	2.572	2.902	3.248	3.611

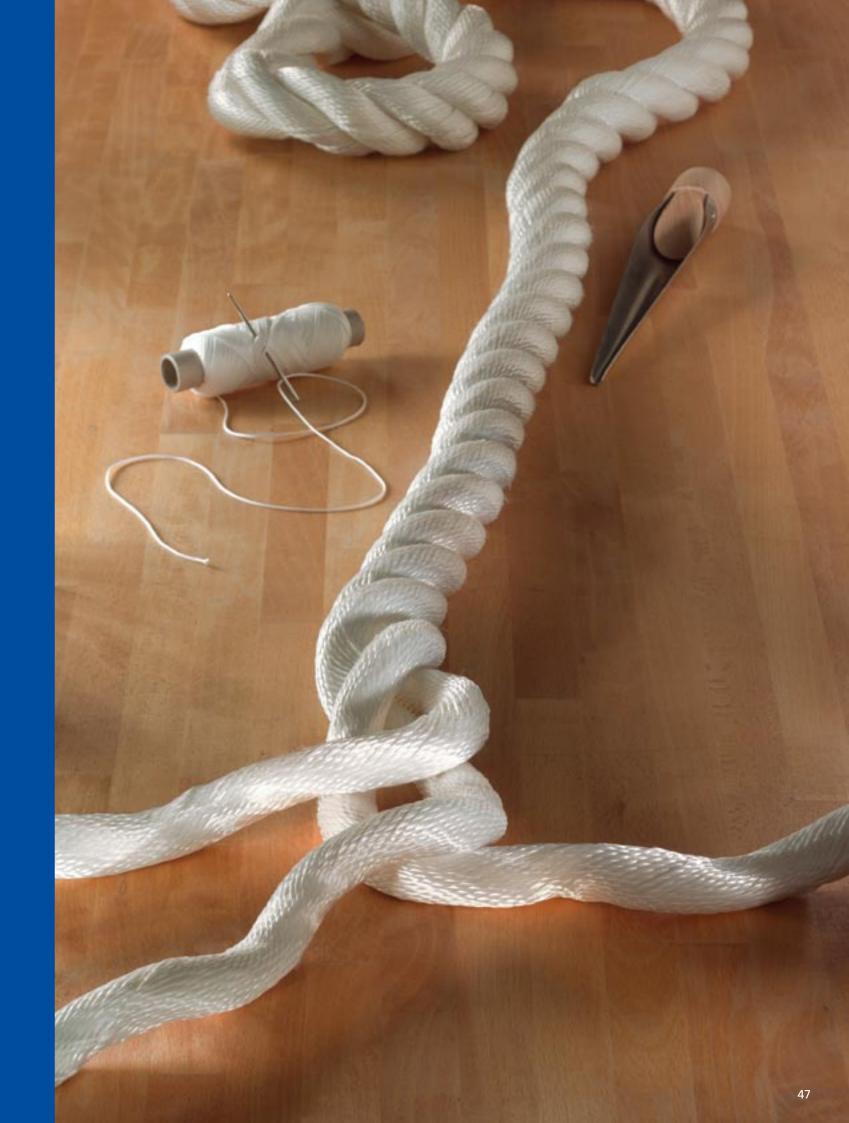
Polyamid / Polyamide (Nylon)

Ø mm	12	14	16	18	20	22	24	26	28	30	32	36	40	44	48	52	56	60	64	68	72	80	88	96	104	112	120	128	136	144
GeoSquare Poly	/amid	/ Poly	ramide	e (Nyl	on) D	IN EN 6	96																							
kg/100m	8,9	12,2	15,8	20,0	24,5	30,0	35,5	42,0	48,5	55,5	63,0	80,0	99	120	142	166	193	221	252	286	319	394	477	568	666	772	887	1.010	1.140	1.280
Bl. In kN	31,5	39,0	62,6	72,5	88,0	112,0	125,6	146,5	168,0	196,0	210,0	279,0	350	416	486	565	649	736	830	937	1.035	1.276	1.540	1.830	2.130	2.455	2.794	3.160	3.534	3.940

Polypropylen / Polypropylene

				_																											
Ø mm	12	14	16	18	20	22	24	26	28	30	32	36	40	44	48	52	56	60	64	68	72	80	88	96	104	112	120	128	136	144	
GeoSquare Ge	oProp	DIN 83	334 DI	N EN 6	99																										
kg/100m	6,5	9,0	11,5	14,8	18,0	22,0	26,0	30,5	35,5	40,5	46,0	58,5	72	88	104	122	142	163	185	208	234	290	351	417	490	570	650	740	840	940	
Bl. in kN	21,7	30,0	37,0	47,0	57,0	70,0	82,0	95,0	109,0	125,0	142,0	180,0	220	265	325	385	442	508	575	622	690	835	1.000	1.180	1.355	1.565	1.765	2.025	2.280	2.545	
GeoSquare PP	Monof	il din	EN 699	9																											
kg/100m							26,0		35,5	40,5	46,0	58,5	72	88	104	122	142	163	185	209	234	290	351	417							
Bl. In kN							79,7		105,0	117,0	132,0	166,0	201	241	280	324	371	424	480	539	603	741	889	1050							
GeoSquare Po	werPlu	s (keir	ne inter	rnatior	ale No	rm / n	o inter	nation	al stand	dard)																					
kg/100m							27,5		35,5	42,5	48,5	61,5	76	93	110	128	150	170	194	215	245	300	365	435							
Bl. In kN							107,0		138,0	164,0	186,0	235,0	287	350	414	479	558	629	714	789	899	1.100	1.332	1.577							
GeoSquare Po	werPla	it (kei	ne inte	rnatio	nale No	orm / n	o inter	nation	al stan	dard)																					
kg/100m							26,0		34,0	41,0	46,0	59,0	72	88	104	122	142	163	185	209	234	290	351	417							
Bl. In kN							96,0		125,0	150,0	170,0	216,0	266	333	387	445	510	583	666	748	828	1.020	1.225	1.450							
GeoSquare He	трех (keine i	interna	tionale	Norm	/ no ir	nternat	ional s	tandar	d)																					
kg/100m							23,0		31	35	40	51	63	77	91	107	124	142	162	183	205	253	306	364							
Bl. In kN							48,0		65,0	73,0	83,0	104,0	129	156	185	215	249	284	322	361	400	490	580	680							
	172 350	1100	1000		No. of																										

Twist



Der Klassiker ...

Bestechend einfach und seit fünf Jahrtausenden bewährt:
Das gedrehte Seil. Fasern werden zu Garnen verdreht,
Garne zu Zwirnen, Zwirne zu Litzen und Litzen zum Seil.
Bis heute überzeugt die langlebige und preiswerte
Konstruktion mit hohem Absorbtionsvermögen
in vielen Bereichen.

The classic construction.

An impressive and proven track record over 5000 years!
The laid rope. Fibres twisted into yarns, yarns into twines,
twines into strands and strands into a rope. Throughout
history this rope has proved its longevity and costeffectiveness in countless applications.

MegaTwist

Der wirtschaftliche Vorteil der Twist Konstruktion kommt nur bei hochfesten Fasern zum Tragen. Wegen relativ hoher Verseilverluste sind MegaTwist Seile aus hochmodularen Fasern als Standardprodukt nicht sinnvoll. Als Sonderkonstruktion sind sie auf Kundenwunsch jedoch möglich.

The commercial advantages of the Twist construction can only be realized by using high tenacity fibres. Due to the relatively high loss in strength conversion, The MegaTwist construction made from high modulus fibres would not make sense as a standard product.

mmercial advantages combined

Twist construction can synthetic to the realized by using high is in the realized by the first process of the realized by the synthetic to the realized by the synthetic to the realized by the synthetic to the realized by high loss in strength

GeoTwist

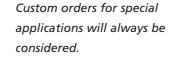
Der richtige Dreh. In geschlagenem Tauwerk von Gleistein stecken über 180 Jahre praktischer Erfahrung – in Verbindung mit modernen Chemiefasern zeigt es, was in ihm steckt.

Turning with time. Inherent in the construction of laid ropes is 180 years of Gleistein practical experience – combined with modern synthetic fibres, the proof is in the result.

 Sofern nicht anders angegeben, sind GeoTwist Standardprodukte ausgeführt als 3-schäftig geschlagenes Tauwerk aus hochfesten Fasern

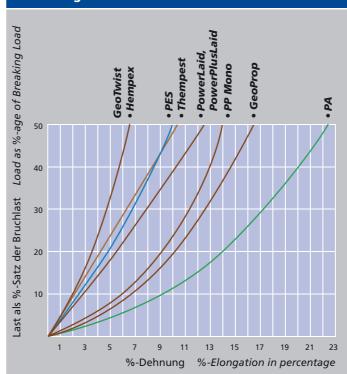
GeoTwist ist auch 4-schäftig lieferbar. Eine Einlage stabilisiert dabei den Querschnitt

 Durch einen Wechsel der Drehrichtung in jeder Stufe (Garn-Zwirn-Litze-Seil) wird das Gebilde fest zusammen gehalten


Twist Seile sind preiswert herzustellen und haben konstruktionsbedingt eine verhältnismäßig hohe Dehnung. Sie sind universell einsetzbar und weit verbreitet, wurden aber in den letzten Jahren gerade in größeren Durchmessern zunehmend durch technisch überlegene Geflechtkonstruktionen abgelöst

 Unless otherwise stated, standard GeoTwist products are manufactured as 3-strand constructions from high tenacity fibre

On request, 4-strand.
 GeoTwist is also available.
 Manufactured with a rope centre core for cross-sectional stability


The opposing twist directions (yarn-twine-strand-rope) ensure a stable and solid construction

• Twist ropes are economic to produce and impart a constructional elongation to any material. They are essentially a universal type of rope with limitless applications, although larger diameters of this traditional construction have generally been replaced by technically more advanced braided constructions

Kraft-Dehnungsdiagramm GeoTwist

Load/Elongation Curves of GeoTwist

- GeoTwist ist durch seine knubbelige Oberfläche besonders griffig
- Twist Tauwerk ist im Gegensatz zu Geflechten nicht drehungsneutral, sondern kann unter Zug trotz sorgfältigster Konstruktion kinken bzw. aufdrehen
- Die gedrehte Konstruktion ist die älteste Art,
 Seile zu fertigen. Archäologische Funde belegen,
 dass schon vor über 5000
 Jahren im alten Ägypten
 Seile auf diese Art hergestellt wurden
- Einfach zu erlernende Spleißtechnik. Gleistein bietet Ihnen gerne diesen zusätzlichen Service
- Wegen der hohen Kräfte sollten gespleißte Augen sorgfältig geschützt und nur hochwertige Kauschen verwendet werden

- The knobbly surface of this construction gives outstanding handling characteristics
- Twist ropes are not torque-free and can, despite all precautions taken in production, kink if used incorrectly
- Laid ropes are the construction which is in layman's terms recognized as "real rope". It is the oldest construction used in rope making. Egyptians were making ropes in this manner 5.000 years ago, a fact substantiated by archaeological finds
- The splicing technique is straightforward. Gleistein offers this service on request
- It is recommended that splices are protected carefully and only quality thimbles with smooth surfaces are used to maximize abrasion resistance

♣ GeoTwist Polyester

Hält und hält und hält ... und ist deshalb die wirtschaftlichste Lösung für rauen Einsatz.

"Best of both worlds" - Tradition und Moderne

Steckt auch herbe Schläge ein: Das geschlagene

- 4-stufiger Seilaufbau aus hochfesten Polyester Endlosfilamenten in weiß mit KF blau, schwarz oder navyblue
- · Sorgfältig thermostabili-
- siert Hohe Festigkeit, relativ niedrige Dehnung

♣ GeoTwist Thempest

im Fasermix.

und Hanf

Polyamid-Seil.

oder schwarz

verhärtung

hohe Dehnung

• 4-stufiger Seilaufbau

• 4 stufiger Seilaufbau

aus Gleisteins Thempest

Mischgarnen (34 % PES

spinngefärbt/66 % PP Folie)

in den Farbtönen Bronze

GeoTwist Polyamid

aus hochfesten Polyamid

Endlosfilamenten in weiß,

Die sorgfältige Thermo-

stabilisierung vermindert

rohstoffbedingte Material-

Sehr gute Festigkeit und

- Beste UV- und
- Abriebbeständigkeit • Gefertigt nach EN 697 mit bis zu 20% höheren Festiakeiten
- · Bleibt immer flexibel und verhärtet nicht durch Witterungseinflüsse

• Sehr gute Festigkeiten bei

Traditionellen Schifffahrt

mittlerer Dehnung

Abriebbeständigkeit

• Die Referenz in der

· Gute UV- und Abrieb-

· Gefertigt nach EN 696,

· Durch hohe Material-

Schiffsfestmacher

· Nicht schwimmfähig

mit bis zu 10 % höheren

dehnung ausgezeichnete

beständigkeit

Festigkeiten

Gute UV- und

- Nicht schwimmfähig
- solution for tough applications. • 4 stage rope construction

GeoTwist Polvester

with EN 697 with up to

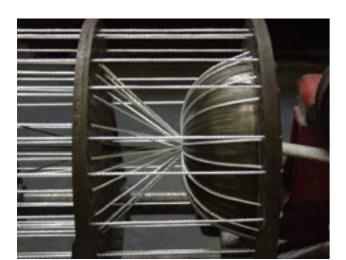
Holding power ... at its best – an excellent commercial

- from polyester continuous fibres in white with blue marker, black or navy blue • Thermostablized
- High break strength, relatively low elongation
- Excellent UV and abrasion resistance
- Produced in accordance 20% higher break strength
- Remains flexible even under extreme weathering
- Its' proven longevity makes it extremely good value
- Negative buoyancy

♣ GeoTwist Thempest

"Best of both worlds" - Modern tradition in a fibre mix.


- 4-stage rope construction from Gleistein's superior Thempest fibre mix (34% PES HT and 66% PP Split filament) in hemp and bronze colour
- Excellent Break strength and moderate elongation
- Good UV and Abrasion resistance
- A reference rope for traditional vessels


GeoTwist Polyamide / Nylon

- 4 stage rope construction from polyamide continuous fibres in white or black
- Thermo stabilized for reduced work-hardening in extreme conditions
- high elongation
- · Good UV and abrasion resistance
- Produced in accordance with EN 696 with up to 10% higher break strength
- High elongation provides excellent energy absorption for mooring lines
- Negative buoyancy

The shock-absorber: The laid polyamide rope.

- · Excellent break strength,

GeoTwist PowerPlus

Enorme Festigkeit und Langlebigkeit in einem leichten und preiswerten Seil.

- 3-stufiger Seilaufbau aus Plus Garnen (Polysteel mit angewirbelten PES Endlosfilamenten) in grün/ weiß meliert
- Exzellente Festigkeit und mittlere Dehnung
- Sehr gute UV- und Abriebbeständigkeit
- Keine Materialverhärtung durch Bewitterung
- Spezifisches Gewicht schwimmfähig
 - 1,1 g/cm3, daher nicht

GeoTwist PowerLaid

Universell, kraftvoll, schwimmfähig und dabei besonders preiswert.

- 3-stufiger Seilaufbau aus Polysteelgarnen in seegrün mit Kenngarnen orange
- Gute Festigkeit und mittlere Dehnung
- Befriedigende UV- und Abriebbeständigkeit
- GeoTwist PowerLaid übertrifft die Werte der DIN EN 699 um bis zu 30 %
- · Keine Materialverhärtung durch Bewitterung
- Schwimmfähig

GeoTwist GeoProp

Gute Allroundeigenschaften in einem schwimmfähigen, äußerst günstigen Seil.

GeoTwist PP Monofilament

Einfach nur unschlagbar günstig!

- 4-stufiger Seilaufbau aus hochfesten multifilen PP Endlosfilamenten in weiß, schwarz, navyblue und blau
- Gute Festigkeit und mittlere Dehnung
- Eingeschränkte UV- und **Abriebbeständigkeit**

• 3-stufiger Seilaufbau aus

monofilen Polypropylen

und mittlere Dehnung

GeoTwist Hempex

• 3-stufiger Seilaufbau aus

ausgesponnenen PP

Stapelfasergarnen in

Naturfarbe (Hanfersatz)

• Befriedigende Festigkeit

und geringe Dehnung

tungsfester Ersatz für

• Idealer und verrot-

Naturfasertauwerk

im Bastfaserspinnverfahren

Sieht aus wie Hanf, fühlt sich an wie Hanf,

ist aber ein modernes Chemiefaserseil!

Extrusion in schwarz, weiß

Garnen aus eigener

orange oder blau Befriedigende Festigkeit

- · Gefertigt nach EN 699, auch der früheren DIN 83 334 entsprechend
- Keine Materialverhärtung durch Witterungseinflüsse
- Schwimmfähig
- Wegen des günstigen Preises ein gutes Allroundseil

• Eingeschränkte UV- und

• Gefertigt nach DIN EN 699

Keine Materialverhärtung

Abriebbeständigkeit

durch Bewitterung

• Sehr gute UV Stabili-

sierung, befriedigende

Gefertigt nach DIN 83 329

• Keine Materialverhärtung

durch Witterungseinflüsse

Abriebbeständigkeit

Schwimmfähig

Schwimmfähig

GeoTwist PowerPlus

High break strength and long life in a light, economic rope.

- 3 stage construction from Plus yarns, Polysteel and polyester continuous fibres combined in green/white
- Excellent break strength, moderate elongation
- Very good UV and abrasion resistance
- Remains flexible and does not work-harden in extreme conditions
- Specific gravity 1.1 g/cm³, hence non-buoyant

GeoTwist PowerLaid

Allrounder, powerful, floats - and really economic.

- 3 stage rope construction from Polysteel yarns sea green with orange marker
- Good break strength, moderate elongation
- Satisfactory UV and abrasion resistance
- Exceeds the requirements of DIN EN 699 with up to 30% higher break strength
- Even under extreme weathering, remains flexible and does not work-harden
- Positive buoyancy

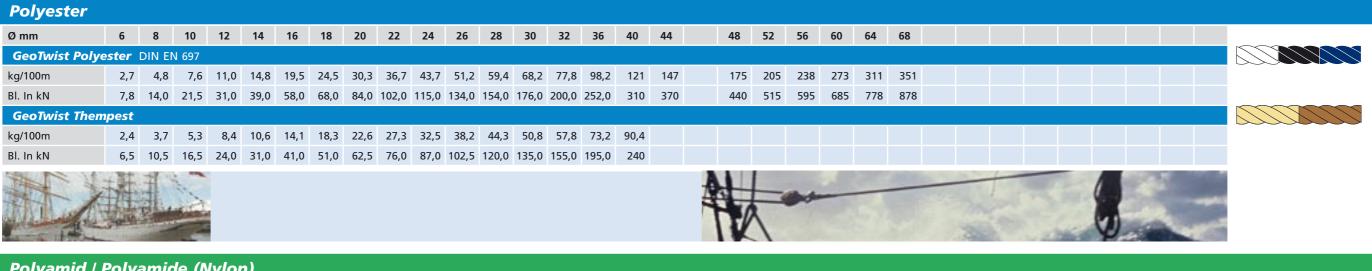
GeoTwist GeoProp

Good multi-functional characteristics in an economic floating rope.

- 4 stage rope construction from high tenacity PP multifilament fibres in white, black, blue or navy blue
- Good break strength,
- moderate elongation Limited UV and abrasion resistance
- Produced in accordance with EN 699 and DIN 83 334
- Remains flexible and does not work-harden
- Positive buoyancy • A good economical general-purpose rope

GeoTwist PP Monofilament

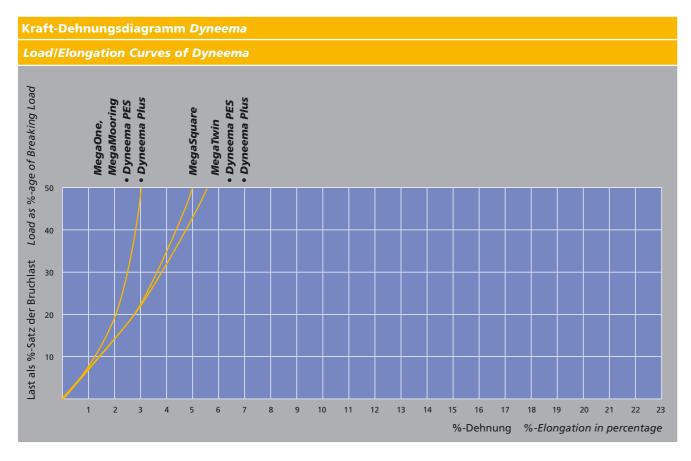
Extremely cost-effective.

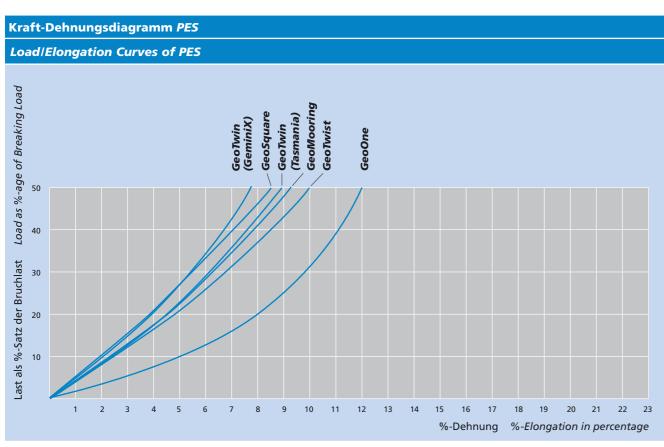

- 3 stage rope construction from polypropylene monofilament yarns from Gleistein's own extrusion process. Available in white, orange, blue or black
- Satisfactory break strength, moderate elongation
- Limited UV and abrasion resistance • Made in accordance with
- **DIN EN 699** • Even under extreme wea-
- thering remains flexible and does not work-harden
- Positive buoyancy

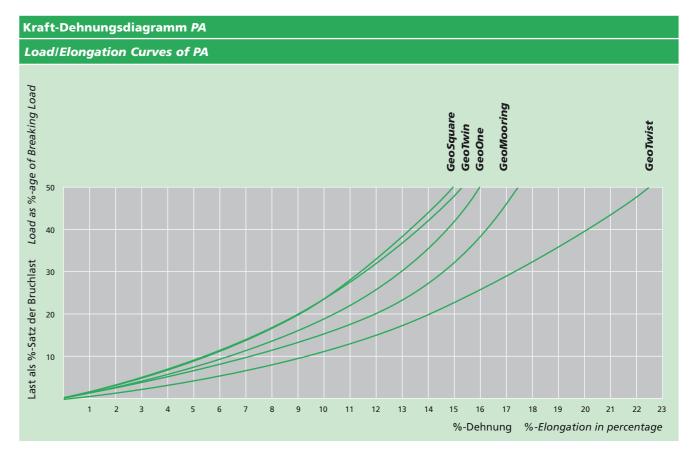
GeoTwist Hempex

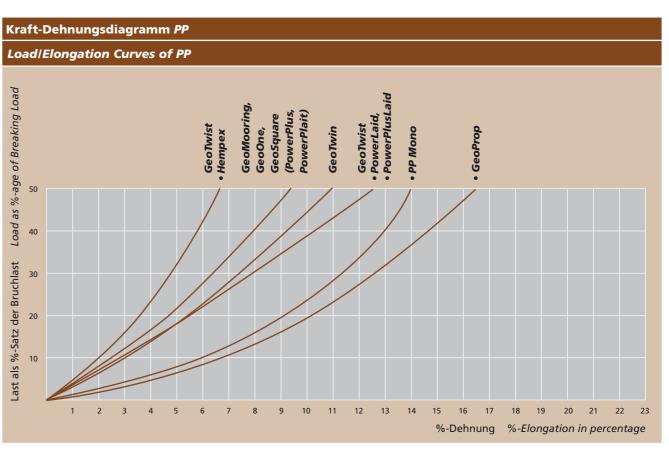
Looks like hemp, feels like hemp but it is a completely modern synthetic fibre rope!

- 3 stage rope construction from PP staple fibre, spun in the traditional bast fibre varn-spinning procedure in natural colour (hemp-substitute)
- · Satisfactory break strength, minimum elongation
- Ideal rot-free replacement for natural fibre rope
- · Very good UV and moderate abrasion resistance Made in accordance with
- DIN 83 329 • Even under extreme weathering remains
- flexible and does not harden
- Positive buoyancy


Detaillierte Informationen über die verwendeten Rohstoffe und ihre spezifischen Eigenschaften: Seiten 76 - 77. Detailed information on raw materials and their specific properties on pages 76 – 77.




Polyamia i	Poly	amie	ae (n	vyioi	(נו																		
Ø in mm	6	8	10	12	14	16	18	20	22	24	26	28	30	32	36	40	44	48	52	56	60	64	68
GeoTwist Poly	amid /	Polya	mide	(Nylo	n) DIN	N EN 6	96																
kg/100m	2,3	4,0	6,2	8,9	12,2	15,8	20,0	24,5	30,0	35,5	42,0	48,5	55,5	63,0	80,0	99	120	142	166	193	221	252	2 280
Bl. In kN	9,3	14,0	22,0	35,0	45,0	55,0	75,0	92,5	112,0	126,0	147,0 1	67,0 1	196,0	210,0	279,0	350	415	486	565	652	742	842	2 925
											T	X A A			1	Total Marie							


Polypropy	len / I	Poly	prop	yler	e																		
Ø in mm	6	8	10	12	14	16	18	20	22	24	26	28	30	32	36	40	44	48	52	56	60	64	68
GeoTwist Geo	Prop DI	N 8333	34																				
kg/100m	1,7	3,0	4,5	6,5	9,0	11,5	14,8	18,0	22,0	26,0	30,5	35,5	40,5	46,0	58,5	72	88	104	122	142	163	185	208
Bl. In kN	5,9	10,4	15,3	21,7	30,0	37,0	47,0	57,0	70,0	82,0	95,0	109,0	125,0	142,0	180,0	220	265	325	385	442	508	575	622
GeoTwist PP M	Ionofil	DIN E	N 699																				
kg/100m	1,7	3,0	4,5	6,5	9,0	11,5	14,8	18,0	22,0	26,0	30,5	35,5	40,5	46,0	58,5	72	88	104	122	142	163	185	208
Bl. In kN	5,9	10,4	15,3	21,7	29,9	37,0	47,2	56,9	68,2	79,7	92,2	105,0	120,0	132,0	166,0	201	241	280	324	371	424	480	530
GeoTwist Pow	erPlus	(keine	intern	ational	e Norn	n / <i>no i</i>	interna	tional s	standa	rd)													
kg/100m										27,5	32,0	35,5	42,5	48,5	61,5	76	93	110	128	150	170	194	215
Bl. In kN										107,2	122,0	138,0	164,0	186,0	235,0	287	350	413	479	558	629	714	790
GeoTwist Pow	erLaid	(keine	intern	ational	e Norr	n / <i>no</i> .	interna	tional	standa	rd)													
kg/100m	1,6	2,9	4,5	6,5	8,8	11,6	14,6	18,1	21,9	26,1	30,6	35,4	40,7	46,7	58,7	73	88	104	123	142	163	186	210
Bl. In kN	7,0	12,0	19,0	27,5	37,0	48,0	60,0	73,5	87,5	103,0	120,0	136,5	153,0	171,6	214,0	263	316	373	435	501	571	645	723
Geo Twist Hen	npex DI	N 8332	29																				
kg/100m	1,6	2,8	4,3	6,3	8,1	10,4	13,0	16,0	19,0	23,0	27,0	31,0	35,0	40,0	51,0	63	77	91	107	124	142	162	183
Bl. In kN	3,5	5,9	9,0	13,4	17,4	21,8	27,3	34,2	41,0	48,3	56,4	64,7	73,0	83,0	104,0	129	156	185	215	249	284	322	361
RE WE			+																				

Kraft-Dehnungskurven im Vergleich Load/Elongation Curves Compared

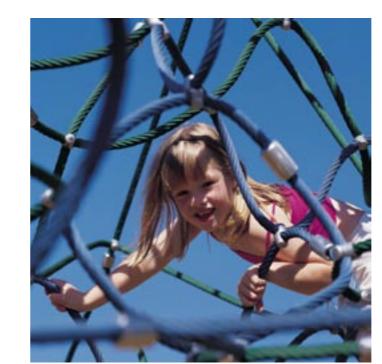
GeoSpecials

Technische Textilien bieten unendliche Möglichkeiten von der Universalleine bis zum ausgefeilten Nischenprodukt. Genau hier beginnen die Gleistein Specials: mit maßgeschneiderten Lösungen für ganz spezielle Anwendungen. Und sollte Ihre noch nicht dabei sein, vertrauen Sie auf unser Know-How!

Synthetic fibres offer limitless possibilities, from multipurpose lines to elaborate niche products. This is where Gleistein Specials start: with custom built solutions for special applications. Should your special not be present, you can rely on our experience and know-how.

Herkules

Kombinierte Draht-Faserseile Combination wire-fibre rope


Herkules Tauwerk ist eine Spezialität, die wir schon seit vielen Jahren herstellen. Es handelt sich um gedrehte Seile, bei denen die Litzen jeweils einen Kern aus Draht haben, der durch Faserummantelung komplett abgedeckt wird. Herkules Tauwerk hat trotz seines robusten Innenlebens aus Metall also eine komplett textile Oberfläche. Ursprünglich für die Fischerei entwickelt, findet Herkules heute insbesondere Anwendung als Grundmaterial für die Herstellung von Kletternetzen auf Kinderspielplätzen. Durch das Innenleben aus Draht kann Herkules nicht so leicht durch Vandalismus zerstört werden.

Hercules rope is a special product that we have been producing for a number of years.

It is a laid rope where each

It is a laid rope where each strand is composed of an inner wire core completely covered with filament yarns. This produces ropes with a textile surface and wire cores.

Hercules rope was developed originally for the fishing industry. Today it is also used as the main component in climbing nets for children's playgrounds. The wire centre to each strand reduces the risk of vandalism to a minimum.

Herkules f	ür Fis	chere	i / He	rkule	s for	comm	ercia	l fishi	ing				
Ø mm	12	14	16	18	20	22	24	26	28	30	32	34	36
PP-Folie Konstruk	tion / PP	Splitfilan	nent cons	truction	6x12+1								
kg/100m	21	25	36	47	58	71	85	100	142				
Bl. In kN	24	36	54	71	86	107	126	148	224				
PP-Folie Konstruk	tion / PP	Splitfilan	nent cons	truction	6x19+1								
Ø mm	12	14	16	18	20	22	24	26	28	30	32	34	36
kg/100m	27	31	37	45	53	62	80	91	110	122	137	155	174
Bl. In kN	32	47	57	69	82.3	94	120	133	165	183	202	229	250

GeoProp umlegt,	umfloch	ten, umle	egt + ver	klebt, ur	nflochter	n + verkle	ebt / Geo	Prop laid	d, braide	d, laid +	glued, b	raided +	glued
Ø mm	12			16				18		2	0	2	4
Litzen / strands	4	4	4	6	6	6	4	4	6	4	6	6	6
Drahtkonstr./ wire construction	H+12/ 0,5	19/ 0,5	H+6/ 0,75	7/ 0,75	H+12/ 0,5	19/ 0,5	19/ 0,5	H+9/ 0,8	19/ 0,5	19/ 0,5	19/ 0,5	19/ 0,5	19/ 0,65
kg/100m	14,5	23,5	20,0	26,5	26,0	31,0	30,0	30,0	36,0	36,0	39,0	46,0	58,5
Bl. In kN	20,0	35,0	25,0	39,0	33,0	50,0	35,0	40,0	57,5	38,0	50,0	50,0	58,0
PA umlegt, umflo	chten, ui	mlegt + \	/erklebt,	umfloch	ten + ver	klebt / N	lylon laic	l, braide	d, laid +	glued, br	aided +	glued	
Ø mm	12		16		18	20							
Litzen / strands	6	4	6	6	6	6							
Drahtkonstr. / wire construction	7/ 0,55	19/ 0,5	H+12/ 0,5	19/ 0,5	19/ 0,8	19/ 0,5							
kg/100m	16,0	28,0	26,0	38,0	41,5	44,0							
Bl. In kN	20,0	35,0	33,0	50,0	57,5	52,3							

Konstruktion

- 3-, 4- oder 6-schäftige Seile von 12–36 mm Ø
- Verschiedene Drahtkonstruktionen nach Kundenspezifikation
- Standard-Drahtfestigkeit 1.770 N/mm²
- Vier verschiedene Litzenummantelungsarten:
 Umlegt, umlegt und verklebt, umflochten, umflochten und verklebt
- Verschiedene Rohstoffe zur Litzenummantelung: PP Splitfaser, GeoProp hochfest, Polyamid spinngefärbt, Polyester spinngefärbt

Wissenswertes

- Herkules Seile werden bei uns sorgfältig vorund nachgeformt, um eine problemlose Weiterverarbeitung zu gewährleisten
- Herkules Seile werden standardmäßig aus verzinkten Stahldrähten hergestellt. Es können auf Kundenwunsch auch NIRO oder verzinkte Eisendrähte geliefert werden
- Herkules Seile sind im Seilkern auch mit Fasereinlage (FC = Fibre Core) oder Drahtseileinlage lieferbar (IWRC = Independent Wire Rope Centre)
- Endverbindungen in Herkules Tauwerk können durch Spleißen, Klemmen oder Verpressen hergestellt werden (analog zu Drahtseilen)
- Wir fertigen auch Ihre Sonderkonstruktion

Construction

- 3,4 or 6 strand rope from 12–36 mm Ø
- Various wire constructions according to custo-
- Standard wire tenacity 1.770 N/mm²

mer specifications

- 4 different wire covering processes: laid, laid and glued yarns; braided, braided and glued yarns
- Different raw materials for strand covering: PP split fibres, high tenacity GeoProp, solution dyed polyamides and polyesters

Notable properties

- Hercules ropes are preformed, to minimize unlaying and its resultant cost during further fabrication
- Standard Hercules ropes are made using galvanised steel wire but stainless steel wire can be supplied on request
- Hercules ropes can be FC (Fibre Core) or IWRC (Independent Wire Rope Core) on request
- End terminations can be spliced, pressed or swaged
- We manufacture your construction, customised to meet your needs

Herkules

Konstruktion

- · Polypropylen Monofilament, gelb, weich geschlagen, auf Wunsch mit Reflektorband
- Polypropylen Monofilament Hohlgeflechte in verschiedenen Farben, auf Wunsch mit eingeflochtenen Gummifäden (GeoTow Stretch)
- GeoProp Hohlgeflechte • Normseile der Typen
- KN12 (gelb), KN20 (blau/ weiß) und KN28 (rot/ weiß), auf Wunsch mit eingeflochtenen Gummifäden (GeoTow Stretch)

Wissenswertes

- Normseile werden nach DIN 76033 hergestellt. Dies ist auch bei der weiteren Konfektionierung zu beachten
- GeoTow gibt es nur in Großaufmachungen, damit unnötiger Verschnitt in der Weiterverarbeitung vermieden werden kann
- GeoTow Stretch wird unter Spannung auf große Spulen aufgewickelt geliefert und darf vor der Weiterverarbeitung nicht zu lange gelagert werden, damit sich der Stretch-Effekt nicht verliert

Construction

- Polypropylene 3-strand (GeoTwist Polypropylene), yellow soft lay rope. Available with reflector on request
- Polypropylene hollow braid in various colours. Available with inter-braided rubber fibres (Geo-Tow Stretch) on request
- GeoProp Hollow braid
- Standard rope Type KN12 (yellow), KN20 (blue / white) and KN28 (red / white), with interbraided rubber fibres on request

Notable properties

- Standard products made to DIN 76033
- GeoTow is available in long lengths to reduce unnecessary wastage
- GeoTow stretch is packed on large reels under tension and must not be stored too long to avoid loss of elasticity

etterennennen in der seine der

GeoProp braided Stretch GeoProp

PP Monofilament 3-strand

GeoTow

Autoabschleppseile Car Tow Ropes

Das Hauptaugenmerk bei Abschleppseilen liegt auf einer hohen Seilfestigkeit und Seildehnung, gepaart mit schneller und zuverlässiger Spleißbarkeit. Die optimierte Seildehnung kompensiert das Anrucken beim Abschleppen.

Eine Spezialität sind Seile mit eingeflochtenen Gummifäden, die sich bei Entspannung so zusammenziehen, dass sie nicht auf dem Boden schleifen und deswegen nicht überfahren werden können.

Main features of these ropes are their high tenacity, fast and reliable splicing and sufficient elongation to compensate for shock loads during towing. A special product with in-braided rubber fibres is also available. These ropes shorten when not under tension, to ensure that they do not drag on the ground or get run over.

GeoTow												
GeoProp geflocht	GeoProp geflochten / braided											
ø mm	KN12	KN20	KN28									
kg/100m	3,9	6,0	8,4									
Bl. in kN	13	21	30									
Stretch GeoProp	gefloch	nten / b	raided									
ø mm	KN20											
kg/100m	6,7											
Bl. in kN	21,0											
PP Monofilament	gefloc	hten /	braide	d (auch	n / also	stretch	n)					
ø mm	11	12	14									
kg/100m	4,0	4,3	5,7									
Bl. in kN	15,3	16,3	20,7									
PP Monofilament	EN 69	9, 3-sc	häftig .	/ 3-stra	nd							
ø mm	16	18	20	22	24							
kg/100m	11,5	14,8	18,0	22,0	26,0							
Bl. in kN	37,0	47,2	56,9	68,2	79,7							

GeoSafe

Sicherheitsseile **Security Ropes**

sind anspruchsvoll in der Herstellung, da sie bei der Arbeit in großer Höhe als zuverlässige Auffang- und Haltesysteme fungieren müssen. Dabei muss gewährleistet sein, dass der Fallstoß den Abstürzenden nicht lebensbedrohend verletzt. Gleichzeitig muss der Abstürzende aber zuverlässig vor dem Aufprall abgefangen werden. Gleistein ist seit vielen Jahren führend in diesem Gebiet.

Professionelle Sicherheitsseile

The production of safety ropes is highly specialised and dictates that each rope has the capacity to safely arrest the fall of the individual.

In addition Safety ropes must ensure that the shock load on fall arrest does not critically injure the individual while still arresting descent before impact. Gleistein is a proven leader in this field.

GeoSafe

kg/100m

Bl. in kN

ø mm

kg/100m

Bl. in kN

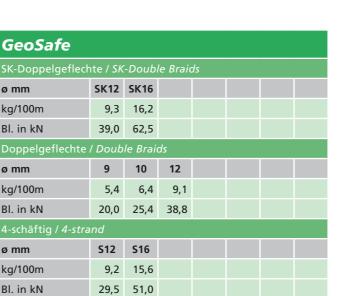
ø mm kg/100m

Bl. in kN

Konstruktion

- 3- und 4-schäftig geschlagene, sorgfältig thermo-
- stabilisierte Polyamidseile • Klassische Doppelgeflechte der Typen SK12 und
- Eine neue Generation an Hochleistungs-Doppelgeflechten (GeoTwin)

Wissenswertes


- Gleisteins doppelt geflochtene Sicherheitsseile haben keine messbaren Kern-Mantelverschiebun-
- Unsere Sicherheitsseile erfüllen alle Kriterien der DIN EN 354 (vormals DIN 7471) hinsichtlich physikalischer Seileigenschaften und maximaler Fangstoßkräfte
- Alle Komponenten von PSA (Persönliche Schutz-Ausrüstung) müssen in einem aufeinander abgestimmten System durch akkreditierte Prüfinstitute zugelassen und CE gekennzeichnet werden
- PSA ohne CE Kennzeichen darf nicht in Verkehr gebracht werden

Construction

- 3- and 4-strand laid constructions, precisely manufactured and stabi-
- lised • Proven standard double braids types SK12 and SK16
- A new generation of engineered double braids

Notable Properties

- Gleistein's new generation of double braided security lines have no measurable core to cover slack
- GeoSafe products are in accordance with DIN EN 354 (previously DIN 7471) and fulfil all criteria of this standard in terms of physical properties and shock absorption capacity
- All components within PSE (Personal Safety Equipment) systems must meet standardised safety requirements and have to be tested and CE marked accordingly by accredited test houses
- Please note that no PSE without CE certification can be used

Konstruktion

 13-schäftige Seile aus 8 Flechtlitzen, 4 parallelen Kantenlitzen und einem parallelen Zentralherz

Wissenswertes

- Die Produktion erfolgt auf der großen Quadratflechtmaschine, die für diese Spezialität aufwändig umgerüstet wird
- Die verwendeten Rohstoffe sind Polyamid 6.6 und Polyester, wobei beide Rohstoffe sowohl als Endlosfilamente, als auch in einer speziell texturierten Ausführung zur Verarbeitung kommen
- Sonderausführung aus Wolle/PA6.6 Stapelfaser
- Quadratischer, extrem kompakter Seilquerschnitt
 GeoRolap Seile werden bei uns im Haus auf die exakt benötigte Länge
- exakt benötigte Länge gebracht und in einem anspruchsvollen handwerklichen Verfahren nach Kundenvorgabe fachmännisch angespitzt
- Der weltweite Vertrieb erfolgt über exklusive Partner. Wir nennen Ihnen gerne Ihren Kontakt

Construction

 13-strand ropes with an exact square plait cross section are produced in an exclusive, compact way

Notable Properties

- The braiding of 8 braids, 1 parallel central strand and 4 parallel corner strands in a highly specialised procedure on one of the biggest plaiting machines in the world produces this unique product
- The raw materials used, which include polyamide 6.6 and polyester in both continuous and texturised form, give this product it's original appearance and good manageability
- Also available in Wool/PA 6.6 combined filament
- Square, extremely compact cross section
- GeoRolap ropes are cut to length and then handtapered, in a process noted for its' high level of craftsmanship
- GeoRolap ropes are represented worldwide and contact can be made through us

GeoRolap

Waschwalzenseile Roller Lappings

Waschwalzenseile sind eine echte Spezialität. Wo immer in der Textilindustrie Fasern gewaschen werden – vor allem bei der Behandlung von Schafwolle – finden Waschwalzenseile ihre Anwendung. Sie werden benötigt, um Waschwalzen so zu bewickeln, dass eine durchgängige und geschlossene textile Oberfläche entsteht, die den hohen Anpressdrücken langfristig standhalten kann.

Roller Lappings are a true speciality. Wherever fibres are washed in the textile industry – especially during the treatment of wool – roller lappings are used.

They are used in combination with rollers to ensure that an even and closed textile surface is created when Rolap ropes are thoroughly wound onto them.

This created surface has to be able to withstand high pressures for long periods of time, to minimize downtime during the wool scouring process.

GeoRolap											
Polyester Endlosfilament / Continuous											
Dimension* mm	26	30	35	40	45	50	55	60	65	70	
kg/100m	61	82	111	145	184	227	275	310	384	445	
Polyester texturie	rt / D	iscon	tinuo	us							
Dimension* mm	26	30	35	40	45	50	55	60	65	70	
kg/100m	43	57	78	101	128	158	191	228	267	310	
Polyamid 6.6 Endlosfilament / Nylon Continuous											
Dimension* mm	26	30	35	40	45	50	55	60	65	70	
kg/100m	50	66	81	117	148	183	222	283	310	359	
Polyamid 6.6 text	uriert	! / Ny	lon D	iscon	tinuo	us					
Dimension* mm	26	30	35	40	45	50	55	60	65	70	
kg/100m	41	55	68	97	123	166	183	218	252	297	
Wolle-Polyamid 6	.6 Sta	pelfa	ser /	Wool	-Nylo	n Dis	conti	nuou.	S		
Dimension* mm	26	30	35	40	45	50	55	60	65	70	
kg/100m	44	59	70	105	133	164	198	236	277	318	

^{*} Dimension = Kantenlänge / * Dimension = width

GeoLastic Gummileinen Shock Cords

GeoLastic, also Gummileinen, sind aus vielen Anwendungen bekannt. Man findet sie zum Segel einbinden im Segelsport, zu Netzen verarbeitet für Autodachgepäckträger als Gepäckspinnen, in Sportgeräten und vielem mehr.

GeoLastic, Shock Cords, have a variety of applications, such as retaining elements in sailing, nets for car roof racks, elements in sports equipment and many more.

10 12

525

100

400

1,75 2,65 4,74 7,84 11,0

300

Konstruktion

- Kern hochwertiger paralleler Elastomer Monofilamente gebündelt durch eine robuste Polyester Umflechtung
- Grundfarbe weiß mit Kenngarnen blau/lila
- Auch in vollfarbiger Ausführung lieferbar

Wissenswertes

- Leinen mit exzellenter UV- und Abriebbeständigkeit
- Gummileinen verlieren ihre Elastizität nach längerem Gebrauch und sind regelmäßig auszutauschen


Construction

- Core of parallel elastomer monofilaments contained by a robust polyester cover in a tightly braided compact construction.
- Standard colour white with blue/purple marker
- Solid colour GeoLastic ropes are also available

Notable Properties

- GeoLastic shock cords have excellent abrasion and UV resistance
- Shock cords lose their elasticity after a period of use and should be replaced regularly

GeoLastic

ø in mm

kg/100 m

Bl. in daN

Dehnung %

Elongation %

Gummileine / Shock Cord

0,64

1,04

80

150 150

100

150

150 150 150 100

Wissenswertes

- Bitte beachten Sie, dass Baumkletterseile nur mit CE Kennzeichen nach EN 1891 eingesetzt werden dürfen. Sie bewegen sich in einem Grenzfeld zwischen PSA (Persönlicher Schutzausrüstung) und Systemen zur Positionierung am Arbeitsplatz und unterliegen damit der EU Maschinenrichtlinie, die eine CE Kennzeichnung zwingend vorschreibt
- Besonderen Wert legen wir auf die Spleißbarkeit unserer Baumpflegeseile. Unsere Handelspartner oder auch wir führen für Sie diesen Service gerne aus
- Statische und Dynamische Kletterseile finden sich auf Seite 68 – 69

Notable Properties

- Please note that tree surgery ropes are highly specialised and therefore the CE marker is essential. They are situated between PSE (personal safety equipment) and System Positioning in the Workplace and are therefore included in the EU Standards network, which dictates the requirements for CE markers
- Huge importance is placed on the splicing of our arborist ropes. Our agents and ourselves will gladly provide any assistance necessary
- Static and Dynamic climbing ropes are to be found on pages 68 – 69

GeoArbor

Seile für die schonende Baumpflege Ropes for tree surgery

In den letzten Jahren wurde die Baumpflege in Europa auf neue Techniken umgestellt, die aus den USA kommen. Die dahinter stehende Philosophie ist baumschonendes Arbeiten durch eine Doppelseil Klettertechnik. Bei möglichst geringem Aufwand an technischem Gerät ersteigen ausgebildete Baumpfleger (Arboristen) die zu pflegenden oder zu fällenden Bäume. Hierfür wird eine Vielzahl von speziellen Seilen benötigt, die Gleistein hier konzentriert vorstellt. Man unterscheidet Kletterseile und Ablassseile. Dazu bieten wir Zubehör wie Cambiumschoner und Wurfleinen an.

In the last few years technology in the tree surgery industry has fostered a number of new developments, many originating in the United States. Double rope climbing techniques have become widely adopted by many tree surgeons and arborists, who have adapted to working with the minimum amount of equipment. Gleistein has made a concerted effort to produce the fullest range of specialist products possible for this highly skilled work. Rigging lines and climbing ropes are the two main product groups. With many accessories like Cambium Savers and Throw lines included in the selection.

GeoArbor

Baumkletterseile Climbing Ropes

Cougar

16-fach geflochtenes Polyesterseil, parallele Einlage mit GEOGARD Ausrüstung. Angenehmes Handling, sehr geringe Kern-Mantelverschiebung. Farbstellung: weiß/gelb 16-plait braided polyester rope with parallel core and GEOGARD finish. Good manageability with a minimum core-cover slack.
Colour: White/yellow

ArborTwin

Klassisches Polyamid Doppelgeflecht, weiß, leicht, elastisch, hohe Bruchkraft, leicht spleißbar. Classic polyamide double braid, white, light, elastic, high breaking load and easy to splice.

GeoBlue

12-er Geflecht aus blauem Polyester mit GEOGARD Finish. Ohne Einlage, daher keine Kern-Mantelverschiebung.

12-plait braided blue polyester with GEOGARD finish. No core element, thus no cover slack.

ArborPlait

Klassisches Polyamid Quadratgeflecht in weiß mit schwarzem Kennfaden, thermostabilisiert. Unkomplizierte Spleißtechnik, hohe Festigkeit.

Classic polyamide square-plait in white with black marker, thermo stabilised, uncomplicated splice technique and high tenacity.

Cougar EN	1891 Ty	/p A			
ø in mm	12				
kg/100 m	11,0				
Bl. in daN	3000				
ArborTwin	EN 18	391 Typ	А		
ø in mm	12				
kg/100 m	9,3				
Bl. in daN	3400				
GeoBlue					
ø in mm	12				
kg/100 m	12,5				
Bl. in daN	3300				
ArborPlait	EN 18	891 Typ	Α		
ø in mm	13				
kg/100 m	8,7				

 $oldsymbol{\epsilon}$

GeoArbor

Ablassseile

Rigging Lines/Bull Ropes

Dyneema

Hochleistungs-Ablassseil: geflochtener Kern aus Dyneema SK75, geflochtener Zwischenmantel, 32-er Mantelgeflecht. Höchste Bruchkraft, robuster Mantel, kleinste Dehnung bei guter Spleißbarkeit.

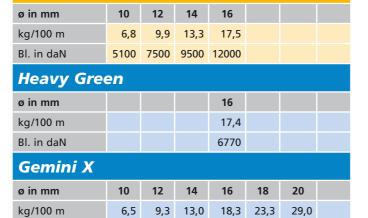
High performance rigging line with braided core from Dyneema SK 75, intermediate cover and robust 32 plait braided cover. Minimum elongation and highest break load with good splice-ability.

Heavy Green

Ein besonders dauerhaftes Polyester Ablassseil. Hochfester geflochtener Kern aus speziellem PES, abriebfester Außenmantel aus spinngefärbten, grünen Polyestergarnen. Hohe Bruchkraft, beste Abriebbeständigkeit, ein echtes Arbeitstier unter den Ablassseilen. A unique robust polyester rigging line. A braided core from special polyester is compacted together by a solution-dyed, green polyester braided cover. High break load, excellent abrasion resistance and very durable. A true work horse.

Gemini X

Dyneema


Bl. in daN

Hochqualitatives Doppelgeflecht aus speziellem Polyester mit doppelten Kenngarnen. Robust und leicht mit hoher Bruchkraft. Gewachste Garne bieten sehr gute Abriebbeständigkeit und verminderte Wasseraufnahme. Leicht spleißbar. Ideal zum Anfertigen von Prussik Slings.

High quality double braid produced from a special polyester with the characteristic double marker yarns. Robust and light with high break load. Very good abrasion resistance and low water absorption due to the waxed yarns. Easily spliced. Easily adapted for production of Prussik Slings.

X		
•	_	

2350 3600 4500 6500 8300 10000

GeoArbor

Zubehör Accessories

cessories

Glatte geflochtene Polyäthylen Wurfleine auf Kleinspule. Smooth braid polyethylene throw line on a small spool.

Cambium Schoner / Saver

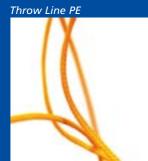
Wurfleine PÄ / Throw Line PE

Mehrfach vernähtes Gurtband mit zwei unterschiedlich großen Aluminiumringen. In verschiedenen Längen erhältlich.

A multi layer woven polyester band with two different sized aluminium rings. Available in various lengths.

Gemini S

Hohlgeflechtseil aus schwarzen Polyester Endlosfilamenten. Ideal für die Baumkronensicherung. Für den Einsatz ohne zusätzliche Hilfsmittel, oder als Bestandteil von Gurtsystemen. Special hollow braid from melt-dyed, black continuous polyester. Ideal for branch securing. Can be used without additional equipment or as part of more complex rope and woven band systems.


Arbor Slings

Hebeschlinge aus Polyester Hohlgeflecht mit GEOTHANE Beschichtung. Fertig konfektioniert mit einem festen und einem einstellbaren gespleißten Auge. In drei Größen lieferbar. Lifting Sling made from hollow braided Polyester with GEOTHANE coating. Readily fabricated with one fixed and one adjustable eye. Available in three sizes.

Wurfleine F	PÄ / 1	Thro	w Li	ne P	E								
ø in mm	3												
kg/100 m	0,24												
Bl. in daN	70												
Cambium S	choi	ner /	Sav	er El	N 354								
Länge/Length cm	60	70	90	100	120	150	200						
Bl. o. / w.out	v.out 6000 daN												
Bl. mit / with	mit / with 3100 daN												
Gemini S													
ø in mm	7/28	10/28											
kg/100 m	11,0	15,8											
Bl. in daN	3900	7150											
Arbor Sling	IS												
ø in mm	14	18	24										
	11,0	19,0	32,5										

4000 6700 11500

66

Bl. in daN

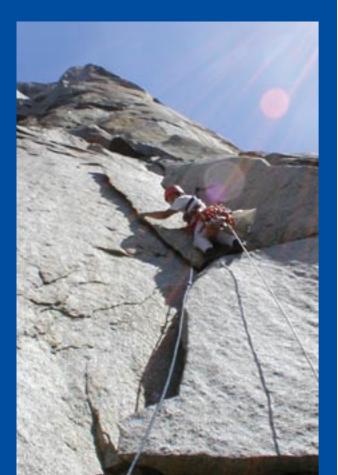
Konstruktion

- Der verwendete Rohstoff ist Polyamid, da nur dieser die notwendige Dehnungscharakteristik aufweist
- Alle Kletterseile sind Geflechtskonstruktionen und als Kern-Mantelseile aufgebaut
- Parallele Einlagen aus Zwirnen werden durch robuste Mantelgeflechte gebündelt
- GeoClimber Kletterseile sind sorgfältig thermostabilisiert
- Statikseile werden eingesetzt, wenn hauptsächlich eine statische Belastung auftritt und nur eine geringe Dehnung gewünscht ist, z. B. Arbeitssicherheit, Rettung, Bergung, Feuerwehr. Zum Klettern sind sie nur bedingt geeignet

Wissenswertes

Kletterseile müssen CE Zeichen tragen

Construction


- The raw material used is polyamide due to it's superior elongation characteristic
- All our climbing ropes are braided kern-mantle constructions
- Parallel core elements using twines are compacted in a robust cover braid
- All GeoClimber ropes are fully thermo stabilised
- Static ropes are predominately used in applications where only a low elongation is feasible, such as: personal security equipment, rescue operations and fire brigades. The use in climbing is limited and not recommended

Please Note:Climbing ropes have to be CE marked

GeoClimber Kletterseile Climbing Ropes

Unsere GeoClimber teilen sich in drei Produktgruppen auf:
Statische Seile, Dynamische Kletterseile sowie Reepschnüre. Diese Seile müssen ein CE Zeichen tragen, um ein hohes Maß an Sicherheit beim Klettersport und anderen Verwendungszwecken zu gewährleisten.

Our GeoClimber climbing ropes are divided into three groups:
Static Ropes, Dynamic Ropes and Assessory Cords. Climbing ropes must be certified with a CE marker to ensure the highest level of security possible in these various high-risk applications.

Statikseile Static Ropes

Statikseil der DIN EN 1891 entsprechend, mit CE Kennzeichen. Static Rope in accordance with DIN EN 1891 with CE marker.

GeoStatic								
Name	GeoStatic 10,5	GeoStatic 11						
kg/100m	6,6	7,4						
Bl. in daN	2700	3100						
Dehnung / elongation	3,3 %	2,7 %						
Seiltyp/Rope type	А	А						
Kennung / tracers	2 x schw./blk	4 x schw./blk						
Farbe / colour	rot, blau, orange, weiß / red, blue, orange, white							
Puppen à / hanks à	30m, 40m, 50m, 60m, 80m, 100m							
Spulen à / spools à	100m, 200m, 500m							

GeoClimber

Dynamikseile/Kletterseile

Dynamic Ropes/climbing ropes

Panter

Unser Premium Produkt für anspruchsvolles Klettern. Gefertigt nach DIN EN 892. Our premium product for toplevel climbing. Made in accordance with DIN EN 892.

Spider

Einfaches Dynamikseil, gutes Allroundseil, gefertigt nach DIN EN 892. Basic Dynamic rope. A good general purpose rope made in accordance with DIN EN 892.

Dynamikseile / D	ynamic Ropes	;
Name	Panter 11	Spider 10
kg/100m	7,85	6,57
Spitzenauffangkraft / max. shock absorbtion	9,8 kN	10,1 kN
Maximale Kern-Mantel- verschiebung max. cover-core slack	22 mm	14 mm
UIAA-Fälle / UIAA falls	7	6
Dehnung / elongation	4,7 %	4,4 %
Farbe / colours	rot/schw, blau/ schw, blau/glb, grau/schw red/blk, blue/blk, blue/yellow, grey/blk	rot/schw, blau/ schw, blau/glb, grau/schw red/blk, blue/blk, blue/yellow, grey/ blk
Puppen à / hanks à	30m, 40m, 45m, 50m	n, 60m, 80m, 100 m
Spulen à / spools à	100m, 200m	

Reepschnüre Accessory Cords

Hilfsschnüre für Bergsteiger nach DIN EN 564. Ab 4 mm Ø mit CE Kennzeichen. Accessory ropes for mountain climbers produced in accordance with DIN EN 564.
From 4 mm with CE marker.

Reepschnüre / Accessory Cords									
ø in mm	3	4	5	6	7	8			
kg/100 m	0,6	1,0	1,6	2,2	3,2	4,0			
Bl. in daN	150	380	670	1000	1270	1640			
Gelb/yellow	Х	Х	Х	Х	Х	х			
Rot/red	-	Х	Х	Х	Х	х			
Blau / blue	Х	Х	Х	Х	Х	-			
Grau / grey	-	Х	Х	Х	Х	-			
KF / tracers	4 x schwarz / 4 x black								
Aufmachung / put-up	100m Spule / 100 m spool								

Wissenswertes

- Kabelzugseile müssen drehungsneutral sein
- Sie werden in großen Längen auf den Haspeln geliefert, die direkt in die Seilwinden eingesetzt werden
- Beide Seilenden werden bei uns im Hause mit gespleißten Augen versehen

Seilrevision

 Zum Service gehören auch regelmäßige Seilrevisionen, da Kabelzugseile extremen Bedingungen im Gelände ausgesetzt werden: Der Kontakt mit den diversen Böden, Schmutz, Steinen, Dornen, Stacheldraht und Kanten beansprucht sie so stark, dass durch Gleisteins Fachleute bestätigt werden sollte, dass ein sicherer Einsatz des Kabelzugseils weiter gewährleistet ist. **Unser besonderer Service** stellt sicher, dass keine unvorhergesehenen Seilbrüche die Arbeiten unnötig verzögern und somit hohe zusätzliche Kosten verursachen

Notable Properties

- Cable pulling ropes must be torque-free
- Delivered in long lengths on special machine reels, which are then placed directly on to the rope winching machines
- The rope ends are usually pre-spliced

QCM Program

• As additional service, we supply a full quality control management program in revising the status of the ropes at predetermined intermediate periods. Contact with damaging elements including dirt, thorns, steel cable and sharp edges is so common in this application, that it is advisable to have Gleistein's engineers review the circumstances and conditions of use to ensure the maintenance of these high quality products. Our special service ensu-

res that no break possibi-

lity is present which could

time and large extra costs

lead to expensive down-

GeoStringer

Kabelzugseile
Cable pulling | stringing ropes

Beim Bau von Freileitungen werden textile Faserseile als Vorseile im Kabelzug eingesetzt. Hierbei wird ein in großer Länge zu lieferndes Faserseil von Freileitungsmast zu Freileitungsmast gezogen, mit dem dann im zweiten Schritt das eigentliche Stromkabel direkt eingezogen wird.

Synthetic fibre ropes are used as hauling lines in the cable pulling operation during the construction of high voltage power pylons. This process involves the cable pulling rope being passed from one pylon to the next with the actual power cable being pulled afterwards in a second stage.

DynaOne

Dyneema

Gemini X

PowerPlus 12

kg/100 m

Bl. in kN

kg/100 m

Bl. in kN

kg/100 m

Bl. in kN

kg/100 m

kg/100 m

kg/100 m

Bl. in kN

kg/100 m

Bl. in kN

Bl. in kN

Power 12

GeoOne PP

Bl. in kN

Kabelzugseile / Cable Pulling Ropes

5,8

85

6,8

51

23

4,0

30

High Voltage Pulling Rope

8 10 12 14 16 18 20 22

13,3

13,0

45

7,5

33

6,5

30

5,8

15,3 75

95 120

65

9,8

43

40

7,3

21 27

9,9

75

9,3

36

5,5

27

5,3

26

4,4

15

8,9 11,8 15,6 21,0 24,9 30,8

115 155 205 265 312 377

17,5 22,3 28,0 32,7

18,3 23,3 29,0 35,0

12,4 18,5

83

60

9,0 11,5 17,0

50

10,6 14,2

36 43

150 190 230

100

76

70

DynaOne

12-er Geflecht aus Dyneema SK75 mit farbiger GEOTHANE Oberflächenbeschichtung. Extrem leicht, niedrige Dehnung, hohe Bruchkraft, gut spleißbar.

12-plait braided Dyneema SK75 with coloured GEOTHANE coating. Extremely light, minimum elongation, high break load and easily spliced.

Dyneema

12-er Kerngeflecht aus Dyneema SK75, 32fach geflochtener Polyestermantel. Leicht, niedrige Dehnung, extrem robuster Mantel, hohe Bruchkraft, komplexe Spleißtechnik.

12-plait braided Dyneema SK75, 32 plait braided polyester cover. Light weight, minimum elongation, robust outer cover, high break load, complex splicing procedure.

Gemini X

Hochwertiges GeoTwin Seil: Spezielle Polyesterfasern in ausbalancierter Konstruktion, weiß mit farbigen KF. Hohe Bruchkraft, geringe Dehnung, flexibel, gut spleißbar.

High class GeoTwin rope of special treated polyester fibres in a balanced construction.

White with coloured tracers. High break load, low elongation, flexible, easily spliced.

PowerPlus 12

Leistungsstarkes Hohlgeflecht aus Plus Garnen, grün/weiß meliert. Niedriges Gewicht, mittlere Dehnung, hohe Bruchkraft, gute Abriebbeständigkeit, sehr gut zu spleißen. High performance hollow braid made from Plus yarns in green/white. Light weight, medium elongation, high break capacity, good abrasion resistance and easy to splice.

Power 12

Qualitäts-Hohlgeflecht aus seegrünen Polysteel Garnen. Sehr niedriges Gewicht, mittlere Dehnung, gute Bruchkraft, befriedigende Abriebbeständigkeit, sehr gut zu spleißen.

Quality hollow braid made from sea green Polysteel fibres. Low weight, moderate elongation, good break strength and moderate abrasion resistance. Good to splice.

GeoOne PP

Hohlgeflecht aus PP monofil, mit und ohne Einlage. Niedriges Gewicht, mittlere Dehnung, befriedigende Bruchkraft und Abriebbeständigkeit, sehr gut spleißbar. PP monofilament hollow braid, with and without core. Low weight, medium elongation, moderate break load and abrasion resistance. Good to splice.

High Voltage Pulling Rope

Parallele Aramideinlage mit umextrudiertem Mantel. Wasser- und schmutzabweisend. Durch den geschlossenen Mantel für die Verwendung bei Wartungsarbeiten geeignet, ohne dass die daneben liegenden Leitungen spannungsfrei geschaltet werden müssen. Eine innovative Konstruktion! Parallel aramid core plus extruded cover.

Water- and dirt resistant. Its closed cover makes it ideal for replacement work. High voltage cables can be serviced or replaced without having to shut down the other high voltage cables during the stringing process.

An innovative construction!

 $^{\circ}$ 0 71

Konstruktion

- 3- und 4-schäftige Seile
- Kabelschlagseile ab 30 mm Durchmesser
- 6-schäftige Seile auf Kundenwunsch

Wissenswertes

- Unsere Hanfseile sind vorgereckt und sorgfältig
- Helle, attraktive Farbe
- Treppenhandläufe werden durchmessergenau geliefert

Construction

- 3 or 4 strand laid ropes • Cable lay constructions from 30 mm diameter
- and up • 6 strand ropes are available on request

Notable properties

- The ropes are pre-stretched and thoroughly polished
- Attractive light colour and even quality
- These traditional ropes are manufactured to exact diameters for the use as handrail ropes

GeoHemp Hanf-/Flachsseile

Hemp/Flax Ropes

Hanf-/Flachsseile nach DIN EN 1261. Wir bieten eine der weltbesten Qualitäten. Hanf- bzw. Flachsseile werden vor allem als Handläufer, Kletterseile auf Spielplätzen und in Turnhallen und als Kulissenseile in Theatern eingesetzt.

Ein weiteres Einsatzgebiet ist die Traditionsschifffahrt.

Hemp/Flax rope to DIN EN 1261. We supply one of the best qualities worldwide. Hemp ropes are mostly used for handrails, gymnasium climbing ropes or hauling lines in theatres. Also traditional ships request these fine ropes.

GeoHemp

GeoHemp									
3-schäftig (A)/4-schäftig (B) / 3-strand (A)/4-strand (B)									
Ø mm	6	8	10	12	14	16	18	20	
kg/100m A,B	2,7	4,7	7,4	11,1	14,1	18,5	23,0	28,5	
Bl. in kN A	2,8	5,0	7,8	11,6	14,8	19,6	24,2	30,0	
Bl. in kN B		4,5	7,0	10,8	13,7	18,2	22,5	27,8	
Ø mm	22	24	26	28	30	32	36	40	
kg/100m A,B	34,5	41,0	48,5	56,0	64,0	73,5	93,0	115,0	
Bl. in kN A	36,0	42,7	49,5	58,2	66,8	76,2	92,0	107,0	
Bl. in kN B	32,4	39,8	46,0	54,1	61,8	70,9	85,6	99,8	
Ø mm	44	48	52	56	60	64	72	80	
kg/100m A,B	138	166	192	224	252	292	369	457	
Bl. in kN A	127	152	178	205	226	260	324	397	
Bl. in kN B	118	141	167	191	210	242	301	369	

GeoHemp									
Kabelschlag / Cable Lay									
Ø mm	22	24	26	28	30	32	36	40	
kg/100m					61,0	70,0	88,0	109	
Bl. in kN					38,4	43,9	53,0	61,8	
Ø mm	44	48	52	56	60	64	72	80	
kg/100m	131	156	182	212	239	277	350	434	
Bl. in kN	73	87	102	118	127	149	186	228	

Imprägnierungen und Beschichtungen **Impregnations and Coatings**

GEOGARD MARINE FINISH

- Spezialausrüstung für Polyester und Polyamid für höhere Festigkeit durch Reduzierung der Faser-Faser-Reibung
- Besserer Abriebschutz und längere Lebensdauer
- Wasserabweisend, dadurch verminderte "Dochtwirkung" und - daraus resultierend - geringere Wasseraufnahme

GEOLAN

Spezialimprägnierung zur Verbesserung des Abriebschutzes und höhere Bruchkraft für GeoProp Seile nach DIN 83334 und andere Produkte

GEOTHANE

Spezialbeschichtung aus einer wässrigen Polyurethan Dispersion für verbesserten Abriebschutz und geschlossenere Seiloberflächen. Durch Einfärbung zusätzlicher **UV Schutz**

GEOTHANE HD

Spezialbeschichtung zur Steigerung der Bruchfestigkeit und zur Verbesserung des Abreibschutzes in industriellen Anwendungen. Das Grundmaterial ist gelblich und hinterlässt eine leicht "klebrige" Oberfläche

PU Ummantelung

- PU Elastonmere, in einem kontinuierlichen Verfahren aufgetragen, bilden einen schützenden und wasserdichten Mantel um das Seil
- Hoch vernetzte Oberfläche mit variabler Wandstärke zur Gewährleistung eines optimalen Abriebschutzes

GEOGARD MARINE FINISH

- Special coating for polyester and polyamide for higher tenacity through reduction of fibre friction
- Better abrasion resistance and increase in longevity
- Geogard is water resistant and its' application leads to lower water absorption of the respective ropes

GEOLAN

Impregnation for enhanced abrasion resistance and improved break load for GeoProp ropes to DIN 83334 and other products

GEOTHANE

- waterborn PU dispersion for better abrasion resistance
- Rope surface is sealed by this process for enhanced
- better UV resistance through use of colour pigments

GEOTHANE HD

Special coating for increase in break strength and improvement of abrasion resistance in a variety of applications. The base material is slightly yellow. The surface of the coated rope will have a somewhat "sticky" touch

PU Elastomer Coating

- PU coatings are applied in a continuous process to seal the rope surface. Thickness of the PU coating can be modified
- Increased abrasion resistance
- PU Elastomer coated ropes are waterproof in the coated areas

Über Rohstoffe, Konstruktionen und Endverbindungen

Für die Eigenschaften eines Seils sind zwei Aspekte ausschlaggebend: Die Konstruktion und die Auswahl der Rohstoffe.

Chemiefasern erreichen ein Vielfaches der Festigkeit und bieten eine viel höhere Lebensdauer als Naturfasern. Für alle, die auf das traditionelle Erscheinungsbild von Naturfaserseilen Wert legen, bietet Gleistein HEMPEX bzw. THEMPEST als überlegene Alternativen im Hanf-Look an.

Die Bandbreite der verwendeten Chemiefasern ist groß. Den bewährten Materialien Polyester, Polyamid und Polypropylen stehen neue Fasern mit überragenden Festigkeiten und minimalen Dehnungswerten zur Seite. Dem Bereich dieser sogenannten Hochmodulfasern gehören die Sorten DYNEEMA (hochmodulares Polyäthylen), VECTRAN (hochmodulares Polyester), TECHNORA (Aramid = hochmodulares Polyamid) und ZYLON (PBO) an. Hochmodulfasern entstehen durch aufwändige Herstellungsverfahren. In herkömmlichen Fasern sind etwa 50% der Kraft tragenden Kettenmoleküle in Faserrichtung orientiert, bei Hochmodulfasern werden bis nahezu 100% erreicht. Dadurch entstehen drahtseilähnliche Festigkeiten und Dehnungswerte bei textilen Eigenschaften.

Es gibt gedrehte (geschlagene) und geflochtene Seile. Beide Grundkonstruktionsformen haben ihre jeweiligen Vor- und Nachteile. Gedrehte Seile sind leicht zu spleißen und verhältnismäßig preiswert. Der Nachteil dieser Grundkonstruktion liegt darin, dass sich gedrehte Seile unter Lastaufnahme aufdrehen – sie sind nicht drehungsneutral.

Geflochtene Seile lassen sich auf die Anforderungen der verschiedensten Einsatz- und Verwendungszwecke technisch optimieren. Jede zu diesem Grundkonstruktionstyp gehörende Flechtart, z.B. Quadtratgeflechte, Rundgeflechte, Doppelgeflechte, Spiralgeflechte und Kern-Mantelgeflechte, hat spezielle Vor- und Nachteile und muss daher systemisch ausgewählt werden.

Die Kombination von Rohstoff und Konstruktion beeinflusst maßgeblich die Seilcharakteristik. So zeichnen sich Hochmodulfasern durch ein sehr niedriges Dehnungsverhalten aus. Die Verarbeitung von Hochmodulfasern in einem gedrehten Seil wäre – was das Dehnungsverhalten angeht – kontraproduktiv. Aus diesem Grunde ist es sinnvoll, für jeden Einsatzzweck die Zielsetzung und Rahmenbedingen genau zu analysieren, um die optimale Konstruktions-Rohstoffkombination zu ermitteln.

Ein weiteres entscheidendes Element ist die Endverbindung der Seile z.B. in Form von Spleißen. Diese werden bei Gleistein durch ausgewähltes und geschultes Fachpersonal ausgeführt. So gewährleistet Gleistein, dass die hohe Qualität unserer Produkte durch die optimale Endverbindung erhalten bleibt.

Raw materials, constructions and connecting elements

The working characteristics of a rope are dependent upon two factors:

The construction and the raw material.

Synthetic raw materials achieve much higher strengths and offer a much longer service life than natural fibres. For those who place great emphasis on the traditional appearance of natural fibre ropes, Gleistein's HEMPEX and THEMPEST offer superior alternatives with their hemp appearance and man-made advantages.

The range of available man-made fibres is large and growing all the time. Newer, more exotic fibres join the proven materials Polyester, Polyamide (Nylon) and Polypropylene and offer outstanding high strengths with minimal stretch. DYNEEMA (high modulus polyethylene), VECTRAN (high modulus polyester), TECHNORA (Aramid = high modulus polyamide) and ZYLON (PBO) belong to the so-called high modulus fibres.

High modulus fibres are produced by complex and costly manufacturing processes. In traditional fibres, 50% of the raw material's chain molecules are oriented in fibre direction; in the case of high-modulus fibres, this reaches practically 100%. Wire-like strength and stretch values are achieved in the process whilst retaining textile characteristics.

There are laid and braided ropes. The two constructions have both advantages and disadvantages. Laid ropes are

easily spliced and comparatively economically priced.

The main drawback of this construction is it's tendency to open up under strain – they are not torque free.

Braided ropes can be constructed for specific applications and areas in order to achieve maximum performance. Included in this category of construction are square-plaits, solid braids, double braids, single braids and kernmantel braids. They all have various advantages and disadvantages, which must be taken into account when choosing a product for a particular application.

The combination of raw material and construction determine the technical characteristics of the rope. The high modulus fibres distinguish themselves by their extremely low elongation.

As a result the production of laid ropes using high modulus fibres would be counterproductive. It is for this reason that it is imperative to ascertain the special application, technical specifications, operation conditions and system aims so that the essential raw material-construction balance is found and applied.

Another decisive factor is the connecting element of the rope namely, the splice. This artisanal task is carried out by specially chosen and trained people in Gleistein. Only through this process can the high quality standards desired be achieved.

		_			
Toc	hnice	ho Da	ton C	hemiet	SCOKE

Technical Properties of Man Made Fibres										
Material Material	Hochmodul Polyäthylen High Modulus Polyethy- lene		Hochmodul Polyamid High Modulus Polyamide	РВО	Polyester Polyester	Polyamid Polyamid	Poly- propylen Poly- propylene	Spleitex Spleitex		
Handelsnamen Trade Names	Dyneema	Vectran	Technora Twaron, Kevlar	Zylon	Diolen, Dacron, Trevira, etc.	Nylon, Perlon, etc.	PP Multi- filament= GeoProp	Hempex		
Festigkeit in g/den Tenacity in g/den	38	23	22-28	37	9	8-9	5–8	5–6		
Festigkeit in daN/mm² Tenacity in daN/mm²	360	230	250-400	ca. 400	110	90-95	50-75	50-55		
Bruchdehnung Elongation at Break	3,80 %	3,30%	3,40 %	2,8%	10-17 %	18-24%	13-17%	14–17%		
Artgewicht in g/cm Specific Gravity in g/cm³	0,97	1,4	1,44–1,45	1,52	1,40	1,14	0,91	0,91		
E-Modul in daN/mm² Modulus in daN/mm²	10.500	10.000	13.000 - 15.000	18.000	1.000 - 1.500	25 - 350	50 - 500	400		
Schmelzpunkt in °C Melting Point in °C	140°C	280°C	Verkokung Carboni- sation bei/at 500°	Verkokung Carboni- sation bei/at 650°	225°C	215–260°C	165–175°C	165–175°C		
Beständigkeit bei kurz- zeitiger Erwärmung in °C Resistance to short-term heat in °C	70°C	200°C	350°C	500°C	170°C	130°C	80°C	80°C		
UV-Beständigkeit UV-Resistance	sehr gut excellent	begrenzt limited	begrenzt limited	begrenzt limited	sehr gut excellent	gut good	befriedi- gend sufficient	sehr gut excellent		
Laugenbeständigkeit Resistance to Alkalis	sehr gut excellent	sehr gut excellent	überwie- gend gut predomi- nantly good	sehr gut excellent	bei Raum- temp.gut good at room temp.	sehr gut geg. schwache good at low conc.	geg. viele sehr gut excellent to most	geg. viele sehr gut excellent to most		
Säurebeständigkeit Resistance to Acids	sehr gut excellent	sehr gut excellent	überw. sehr gut predomi- nantly good	gut good	überwie- gend gut predomi- nantly good	überwie- gend gut predomi- nantly good	sehr gut excellent	sehr gut excellent		
Benzin-Öl-Beständigkeit Resistance to Petroleum Based Products	sehr gut excellent	sehr gut excellent	sehr gut excellent	sehr gut excellent	sehr gut excellent	gut good	sehr gut excellent	sehr gut excellent		
Kriechverhalten Creep	bei hoher Last vorh. creeps at high loads	nicht messbar immeasur- able	kaum messbar hardly measurabe	nicht messbar immeasur- able	kaum messbar hardly measurabe	leichte Kriechneig. slight creep und. load	in hohen Lastbe- reichen at high loads	in hohen Lastbe- reichen at high loads		
Knotenbeständigkeit Knot Strengh	ca. 50% appr. 50%	ca. 50% appr. 50%	ca. 30 % appr. 30 %	ca. 50% appr. 50%	ca. 50 % appr. 50 %	ca. 50 % appr. 50 %	ca. 50 % appr. 50 %	ca. 50 % appr. 50 %		

Begriffserklärungen

Abkürzungen

Polyamid PES Polvester GeoProp Polypropylen multifil hochfest НМ Hochmodular **HMPE** Polyethylen HT

Hochmodulare Polyamidfaser. und TWARON (Fa. Teiiin Twaron B.V., Niederlande), KEVLAR (Fa. DuPont, USA)

chen Belastungen eines Seils. Sie sollten nicht mehr als 25-30 % der Bruchlast betragen

Durchschnittswerte fabrikneuer Seile, die nach nationalen (DIN) oder den Europäischen Normen (EN/ISO) ermittelt werden. Bruchlasten nicht genormter Seile entstehen durch Ermittlung unserer Abteilung Qualitätswesen. Diese unterliegt mit Tauwerklabor und Reißmaschinen der Aufsicht des Germanischen Lloyd

daN

deka-Newton = Maßzahl für die Zugkraft. 1 Newton = 102 pond, 1 daN = 1.020 pond desveralteten Maßsystems,

Rundgeflechte entstehen durch sich verkreuzende Litzen auf einer Kreisbahn. Es sind also schlauchähnliche Gebilde. Definiert werden sie nach der Anzahl der Litzen (8-er Geflechte, 16-er Geflechte etc.). Durch die Art, wie die inneren Hohlräume gefüllt werden, entstehen

- Doppelgeflechte = Kerngeflecht + Mantelgeflecht
- Dreifache Flechtleinen:

• Quadratgeflechte: Sie entstehen durch Verkreuzen von 4x2 Litzen durch die Seilmitte. Der Querschnitt ist eher quadratisch – daher

Hochmodulares **High Tenacity** = hochfest

Aramid

Eingetragene Warenzeichen (Handelsnamen): TECHNORA

Arbeitslasten

Es sind die im Gebrauch übli-

Bruchlasten

Angaben in daN oder kN sind

also ca. = 1 kg

DYNEEMA

DYNEEMA ist das eingetragene Markenzeichen der Firma DSM DYNEEMA (Niederlande) für HMPE Fasern. Wir verwenden ausschließlich DYNEEMA für unsere HMPE Produkte

Flechtarten

Kerngeflecht + Zwischenmantel + äußerer Mantel

der Name. Durchmesser ist die Diagonale, nicht die Kantenlänge • Spiralgeflechte: Entstehen durch Verflechten von Litzen in einer Richtung,

hohe Dehnung, stabiler run-

GeoProp

Gleisteins Handelsname für hochfestes, multifiles Polypropylen

der Querschnitt

kN

kilo-Newton = Maßzahl für die Zugkraft. 1 Newton = 102 pond, 1 kN = 102.000 pond des veralteten Maßsystems, also ca. = 100 kg

Seildehnung

Rohstoffdehnung + Konstruktionsdehnung = Gesamtdehnung. Die Konstruktionsdehnung entsteht, weil die Fasern im Seil nicht in geraden Linien verlaufen, sondern aufgrund der Konstruktion "Umwege" machen. Unter Zug versuchen die Fasern, sich wieder parallel zu ziehen. Je mehr "Faserumwege" vorliegen, desto höher ist die durch die Konstruktion bedingte Dehnung. Im ersten Einsatz zieht sich von der anfänglichen Konstruktionsdehnung schon ein Großteil heraus. Das Seil reckt sich selber aus

Spleitex

Spleitex ist das eingetragene Markenzeichen der Füssener Textil AG

Stapelfasern

Im Unterschied zu Endlosfasern bestehen Stapelfasergarne aus kurzen Faserstücken, die miteinander versponnen werden. Dadurch entsteht eine wollige Oberfläche (siehe Hempex)

VECTRAN

Warenzeichen der Firma Celanese Advanced Materials Inc. für hochmodulare Polyesterfasern

VECTRAN ist das eingetragene

Technical Terms

Abbreviations

Polyamide/Nylon Polvester PFS GeoProp high tenacity multifilament Polypropylene **HMPE** high modulus Polyethylene HThigh tenacity

Aramide

High modulus Polyamide fibre. Registered trademarks: TWARON and TECHNORA (Teijin Twaron B.V., Netherlands), KEVLAR (DuPont, USA)

Braid types

Braids produced by interwoven strands in a tubular form are usually defined according to the number of braided strands (8-plait, 16-plait etc.) The way in which the internal space is filled produces for example:

- double braids = core braid + cover braid
- 3-fold braided line: core braid + intermediate cover + outer cover
- Square plait: Created by crossing 4x2 strands through the middle of the rope. The cross-section tends towards a square shape - thus the name. The diameter is the diagonal or largest cross sectional dimension of the rope
- · Solid braids: Manufactured by braiding strands unidirectionally. Solid braids have a very stable cross section and high elongation

Break loads

Data in daN or kN are averages for brand-new ropes determined by national (DIN) or European norms (EN/ISO). Break loads of non-standard ropes are from data compiled in our own laboratory. Our quality assurance division with its rope laboratory and test machinery is supervised by Germanischer Lloyd

daN deka-Newton =

Measurement of force. 1 Newton = 102 pond, $1 \, daN = 1.020 \, pond \, of$ the old measuring system, approximately 1 kg

DYNEEMA

Registered trademark of DSM DYNEEMA (Netherlands) for high modulus polyethylene fibres. We only use DYNEEMA for our HMPE products

GeoProp

Gleistein's trade name for high tenacity multifilament polypropylene

kN

kilo-Newton = Measurement of force 1 Newton = 102 pond, 1 kN = 102.000 pond ofthe old measuring system, approximately 100 kgs

Rope stretch

Raw material stretch + constructional stretch = total stretch. The constructional stretch is not the result of the fibres in the rope proceeding in straight lines, but of the construction making "detours".

Under load the fibres try to return to parallel alignment. The more "fibre detours" there are, the higher the constructional stretch. During first use in normal conditions or during first anchorage in a seaway, a large proportion of the initial stretch will be pulled out

Spleitex

"Spleitex" is a registered trademark of Füssener Textil AG

Staple fibres

In contrast to continuous endless fibres, staple fibres are short, chopped fibre pieces which when interwoven produce a hairy, wooly surface or matt finish (compare under Hempex)

VECTRAN

VECTRAN is the registered trademark of Celanese Advanced Materials Inc. for high modulus Polyester fibres

Work loads

The normal loads associated with the particular use of a rope. They should not total more than 25-30% of the break load

Wartung, Instandhaltung und Sicherheitshinweise für die Nutzung von Chemiefaser-Seilen

- Unsere Bruchlastangaben sind Daten fabrikneuer Seile.
 Durch Belastung und Bewitterung sinken die Bruchlasten.
- Die Gewichtsangaben wurden unter Laborbedingungen entsprechend EN 919:1995 erhoben. Durch Witterungseinflüsse (z.B. Feuchtigkeit/Trockenheit) kann das Gewicht variieren.
- Für fehlerhafte Angaben übernehmen wir keine Gewähr.
- Weder Gleistein noch Gleisteins Lieferanten haften für Produktbeschädigungen aufgrund unsachgemäßen Gebrauches.
 Zuwiderhandlungen gegen die folgenden Nutzungshinweise werden ausnahmslos als unsachgemäß gualifiziert.

A. Das Wesentliche – was ist richtig, was ist falsch

- Überzeugen Sie sich vor jeder Anwendung, dass sich das Seil in einem einwandfreien Zustand befindet.
- Die Arbeitslast eines Seils sollte nie mehr als 1/5 der Bruchlast betragen. Berücksichtigen Sie, dass Kraftstöße ein Seil extrem belasten können, was zu einem Festigkeitsverlust führen kann.
- Bei Seilumlenkungen müssen die rohstoffspezifischen Faktoren berücksichtigt werden.
- Seilknoten verringern die Festigkeit erheblich.
- Ziehen Sie Seile niemals über scharfe Kanten.
- Vermeiden Sie unnötiges Scheuern an Seil führenden Elementen. Alle Metallteile sollten glatt sein. Seile sollten an Reibepunkten durch Taklinge, aufgenähte Schutzschläuche oder Kunststoffumspritzung (wie z.B. PU) geschützt werden.
- Vermeiden Sie, ein Seil hohen Temperaturen und starkem Sonnenlicht auszusetzen.
- Vermeiden Sie den Kontakt des Seils mit Chemikalien oder giftigen/ätzenden Dämpfen. Bei Bedarf sollten Sie die Faserseile unter kaltem, fließendem Wasser auswaschen.
- Vermeiden Sie übermäßiges Verdrehen von Seilen, da dies zu Schlingen oder Kinken führen kann. So deformierte Seile können erheblich an Festigkeit verlieren. Vor einer erneuten Belastung ist das Seil wieder über das Seilende auszudrehen.
- Seile müssen sachgerecht auf- und abgewickelt, sowie verstaut werden.
- Seile, die von Spulen abgewickelt werden sollen oder über Winden laufen, müssen tangential abgezogen werden, um ein Verdrehen zu vermeiden. Dazu Seilspulen nur von Abspulvorrichtungen abziehen!
- Sollten Sie hinsichtlich des ordnungsgemäßen Seilzustandes unsicher sein, kontaktieren Sie den Hersteller oder erfahrene Fachleute.

B. Beschädigung von Tauwerk

1. Beschädigung aufgrund äußerer Abnutzung

- Seile, die äußerlich so stark geschädigt sind, dass die meisten Fasern verschmolzen, stark gescheuert oder zerrissen sind dürfen nicht mehr verwendet werden.
- Der Abnutzungsgrad kann durch Vergleich der Menge an beschädigten Fasern im Verhältnis zum Gesamtfaseranteil festgestellt werden.
- Nur ein Bruchtest ermöglicht die korrekte Beurteilung des Seilzustandes.

2. Beschädigung durch lokalen Abrieb

Entsteht, wenn Seile unter Spannung über scharfe Kanten gezogen werden.

3. Innere Abnutzung

- Eingedrungende Schmutzpartikel (z.B. Sandkörner) können zu einer inneren Abnutzung des Seils führen.
- Indiz dafür: zunehmende lockere Litzen und pulverisierter Fasernabrieb (= "Mehlbildung"), der aus dem Seil tritt.

4. Überlastung

- Eine Überlastung des Seils ist äußerlich schwer zu ermitteln. Überlastete Seile weisen unter Last eine deutlich verringerte Dehnung auf.
- Außerdem kann eine Verhärtung des Seils in Verbindung mit einer Durchmesserreduzierung ein Indiz für Überlastung sein.

5. Kontakt mit Chemikalien oder intensiver Sonneneinstrahlung

Um eine Beeinträchtigung des Seils durch Chemikalien oder Sonneneinstrahlung feststellen zu können, reiben oder zupfen Sie die Filamente der Garnfaser. Lösen sich die Filamente leicht auf, muss das Seil umgehend ausgetauscht werden.

6. Beeinträchtigung durch Hitze

- In extremen Fällen zeigen Teile des Seils Hitzeschäden durch Reibung auf, was zu einem erheblichen Bruchkraftverlust führen kann.
- Eine Beeinträchtigung des Seils durch Hitze kann durch eine verschmolzene bzw. sehr glatte Oberfläche erkannt werden.
 Ein weiteres Indiz ist eine deutliche Verhärtung des Seils.
- Falls trotz sorgsamer Sichtprüfung noch Zweifel bestehen, sollten Sie das Seil nicht weiter benutzen und sich an den Hersteller wenden.

C. Regelmäßige Inspektion

- Durch Bewitterung in nordeuropäischen Breiten mindert sich die Seilfestigkeit pro Jahr in Abhängigkeit von Rohstoff und Farbe um bis 30%.
- Aufgrund natürlicher Bewitterung und Beanspruchung des Seils ist eine regelmäßige Kontrolle dringend zu empfehlen.
- Bitte beachten Sie, dass Seile mit kleinem Durchmesser im Verhältnis erheblich schneller geschädigt werden können als dickers Seile
- Sollten Sie die Kontrolle selbständig durchführen, so ist eine Abschnittskontrolle empfehlenswert: Begutachten Sie das Seil eingehend von allen Seiten alle 300 mm. In gleichen Abständen sollten auch die innere Oberfläche und der Kern überprüft werden.

D. Instandhaltung nach Inspektion

- Wenn ein über die Gesamtlänge unbeschädigtes Seil an einem Abschnitt eine starke Beschädigung aufweist, kann im Einzelfall dieser Abschnitt herausgeschnitten und das Seil durch einen Ende-zu-Ende-Spleiß wieder verbunden werden. Generell sollte ein Seil, das durch Überlast gerissen ist, nicht mehr benutzt werden.
- Falls sich eine Kausche durch Seildehnung gelöst hat, passen Sie das Seilauge durch Nachsetzen des Spleißes wieder an. Achten Sie darauf, dass die Kausche immer fest sitzt. Nur ein ordentlich ausgeführter Spleiß kann die seilspezifischen Eigenschaften absichern.
- Trocknen Sie ein Seil nie durch Hitze. Seile sollten nur an kühlen, trockenen, gut belüfteten Orten gelagert werden.

E. Sicherheitshinweise

- Stehen Sie niemals innerhalb von Seilschlaufen.
- Seile unter Spannung weisen stets ein großes Gefahrenpotenzial auf. Achten Sie darauf, dass sich niemand in unmittelbarerer Nähe eines Seils unter Spannung aufhält,
 insbesondere nicht in Zugrichtung hinter den Seilenden.
 Überlastete Chemiefaserseile brechen ruckartig, geben
 gespeicherte Energie frei und können zu erheblichen Verletzungen führen. Beschläge bergen das Risiko, bei Bruch
 mitgerissen zu werden und können zu erheblichen Verletzungen führen.
- Achten Sie darauf, dass Seilenden stets sicher befestigt werden.
- Seile dürfen nicht unsachgemäß eingesetzt werden. Ein missbräuchlicher Einsatz von Seilen verkürzt die Lebensdauer des Seils und kann zur Gefährdung des Benutzers führen.
- Bitte behandeln Sie ihre Seile sorgsam.
 Ihr Leben könnte davon abhängen!

Care, Maintenance and Safety Instructions Of Man-made Fibre Ropes

- The break load values were measured on samples of new product and laboratory conditions. The use of the rope and weathering cause a drop of break load.
- Weight is measured accordingly to EN 919:1995. A change in the weather conditions (e.g. moisture/drought) may cause weight differences.
- No responsibility is taken for the correctness of this information.
- Neither Gleistein nor its suppliers will in any circumstances be liable for any damage arising out of the improper use of the product. Any use of the product violating at any time the following prescriptions will be considered improper and inappropriate.

A. Some essential "Do's" and Don't's".

- Ensure before use that the ropes are in good condition.
- All suggested rope sizes are designed such that the load presents not more than 1/5 of the ropes break load. Bear in mind that shock loads can result in a severe loss of break load.
- The radii of rope bends should fit the specific characteristics of the raw material used in the rope.
- Bends and hitches in ropes significantly reduce their strength
- Do not drag ropes over sharp edges.
- Avoid scouring of the rope at guiding elements. All metal parts should be smooth and chaffing points protected by leather, plastic or canvas parceling, or by worming with small sized ropes.
- Avoid exposure to all forms of heat. Avoid unnecessary exposure to the degrading influence of strong sunlight.
- Avoid contamination by chemicals or fumes. If contamination is suspected, wash man-made fibre ropes in cold running water a graph basing.
- Avoid build-up of excessive turn in ropes. If this condition has occurred, loops will form, and, if loaded, strand distortion and loss of strength will result. Work excessive twist over end of rope before straining.
- Ropes should always be correctly coiled, reeled and stowed.
 Ropes running on winches should be pulled off tangentially to avoid kinks or bends.
- If the rope is delivered on a reel, mount the reel on trestles and unreel with the rope coming from underneath the reel.
- If you are not sure about the condition of a rope please contact the manufacturer or professional experts.

B. Damage to the ropes

1. Damage due to external wear

- In the extreme the strands become so worn that their outer faces are flattened and the outer yarns severed. If the predominant part of the yarns are damaged the rope should no longer be used.
- If one strand of a twisted rope is completely broken, the rope has to be exchanged.
- Assessment of the degree of wear is by observation of the number of severed yarns, and the thickness relationship of the un-severed yarns at the abraded and un-abraded sections
- A tensile test of one section of the rope will remove any doubts about the rope's condition.

2. Damage due to local abrasion

 This may be caused by the passage of the rope over sharp edges whilst under tension, and such damage can result in serious strength losses, particularly if, for example, a deep score is produced in the rope.

3. Internal Wear

 Internal wear can be detected by the tell tale signs of a loosening of strands and the presence of powdered fibre. It is most often caused when grit becomes trapped in a rope which is repeatedly flexed in wet conditions.

4. Overloading

 An overloaded rope may be difficult to detect, and a tensile test is invaluable. Check measurements over markers on the rope may reveal local excessive stretch due to overloading, and some hardening of the rope may be observed with a reduction in diameter and considerable reduced extension under load.

5. Chemical attack

- This may be revealed by staining or by ease of plucking or rubbing off filaments or fibres from the yarns.
- If the this is the case the rope must be replaced.

6. Attack by heat

- In extreme cases local fused sections indicate heat through friction and a considerable loss of strength can be expected.
- This may be revealed by glazing of the rope surface.
- If, after careful visual examination, doubts still exist, discard the rope or consult the rope manufacturer.

C. Routine Inspection

- Rope strengths may decrease every year by up to 30% through exposure, depending upon the raw material and the colour.
- Regular inspection of ropes is a worthwhile exercise, as the life can be extended considerably by proper repair and protection at obvious chafing points.
- It must be emphasized that no matter what agency has weakened the rope the effect will be more serious on smaller sizes than on larger sizes of rope.
- Examination of about 300mm of rope at a time is recommended, the rope being turned to reveal all sides before continuing. At the same intervals, the strand should be opened as in splicing, but only sufficiently to allow examination of the inside bearing surfaces.

D. Maintainance after inspection

- Cut out local damaged sections if warranted, using short butt splice. Do not wait for a damaged section of the rope to part under strain, as the recoil effect can disturb the lay of the rope over a considerable length. Any rope which has broken through overload should be discarded.
- If thimbles are loose in the eyes, due to rope stretch, readjust the splice. Never allow a thimble to become so loose that it can rock. Have all splices properly served or taped, and dogs firmly seized. Do not allow any tuck to become undone: every tuck is necessary for the optimum splice efficiency in all constructions of rope.
- Never dry any fibre rope by use of heat. If possible, store ropes in a cool, dry, well ventilated store or locker, preferably on pallets or festooned.

E. Safety tips

- Never stand in rope loops.
- Ropes under strain are always a risk to their environment and to people standing close to them. Therefore ensure that nobody stands close to a rope under strain. Overloaded man-made fibre lines can part abruptly with little warning. The subsequent energy release and lash back can cause serious injury. Fittings are always dangerous; they can be torn away by heavily loaded ropes and increase the risk of accident.
- In preference always use stoppers on the double.
- Ropes are made to be used, not abused. Abuse of ropes leads to short rope life and possible danger to the user.
- Remember to look after your ropes...

[&]quot;Your life may depend upon them!"

Gleisteins Partner für Spitzenleistung Gleistein's Partners for business excellence

Die Qualität der Produkte ist das Ergebnis einer optimalen Kombination mehrerer Faktoren: Die Verwendung von hochwertigen Markenrohstoffen, die Verarbeitung dieser Rohstoffe mit Spitzentechnologie und natürlich die große Erfahrung und das technische Know-how über Seile und deren Anwendung in Ihren Systemen.

Die langjährigen Partnerschaften mit Gleisteins Lieferanten sind damit auch ein wichtiger Garant dafür, immer wieder neue Kunden für die Gleistein Produkte begeistern und gewinnen zu können.

The quality of Gleisteins products is the result of the combination of three major factors: The use of high-quality raw material, the production with latest machinery for optimum accuracy, and of course extensive knowledge in rope production and the diverse systems in which its applied.

Long-term partnerships with Gleistein's suppliers are therefore of great importance to convince new customers about Gleisteins products and for keeping them well satisfied with our products. Zu diesen Lieferanten zählen: Some major suppliers are:

FUSSENER TEXTIL AG

Polyamide

Celanese Advanced Materials Inc. P.O. Box 32414 Charlotte NC 28232 USA

Tel.: +01 804 748 4146 Fax: +01 804 748 3599

 $\hbox{E-mail: for rest.sloan} @ celane seam i.com$

www.vectran.net

DSM Dyneema B.V. Eisterweg 3 6422 PN Heerlen The Netherlands

Tel.: +31 (0)45 5436767

(general access number for DSM Dyneema)

Fax: +31 (0)45 5436778
E-mail: info.dsmhpf@dsm.com
www.dyneema.com

Füssener Textil AG Mühlbachgasse 2–4 87629 Füssen Germany

Tel.: +49 (0)8362 13-0 Fax: +49 (0)8362 13-2 32 E-mail: sales@fuessentextil.de www.fuessentextil.de

GALAN TEXTILE MACHINERY, S.L. Francesc Oller, 91 E-08225 Terrassa (Barcelona) Spain

Tel.: +34 93 7336550 Fax.: +34 93 7884040 E-mail: sales@galan.es www.galan.es

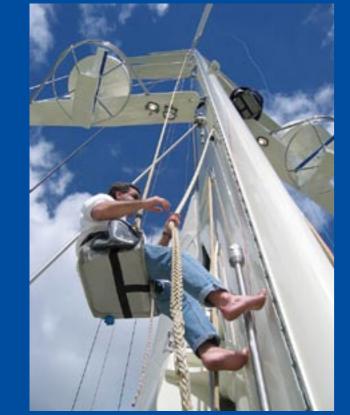
August Herzog Maschinenfabrik GmbH & Co.KG Am Alexanderhaus 160 26127 Oldenburg Germany

Tel.: +49 (0)441 3008-0 Fax: +49 (0)441 3008-100 E-mail: info@herzog-online.com www.herzog-online.com

Rhodia Industrial Yarns AG Gerliswilstrasse CH-6021 Emmenbrücke Switzerland Tel.: +41 (0)41 267 87 87

Fax: +41 (0)41 267 92 16 E-mail: multifilaments@rhodia-iy.com

DK-9300 Saeby Denmark Tel.: +45 98 46 40 00


Roblon Engineering

Fax: +45 98 46 40 00 Fax: +45 98 46 78 20 E-mail: eng@roblon.com www.roblon.com

TEIJIN TWARON BV
Westervoortsedijk 73
P.O. Box 9600
6800 TC Arnhem
The Netherlands
Tel.: +31 (0)26 366 24 23

Fax: +31 (0)26 366 53 93 E-mail: information@twaron.com

www.twaron.com

Fotos / Photographs:

Arved Fuchs

Carl Büttner GmbH & Co.

Nils Emde

Gleistein

Holland Jachtbouw

illbruck-pinta GmbH

Jochen Kleinfeld

Machbar GmbH

Gilles Martin-Raget

Christian Nellen

Ron Holland Design

Royal Huisman Shipyard BV

SVB GmbH

Tayplay Ltd.

Žilmont, s.r.o.